Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode

Eslam A. A. Aboelazm[†], Gomaa A. M. Ali^{†‡}, H. Algarni[§]/, Huajie Yin[⊥], Yu Lin Zhong[⊥], and Kwok Feng Chong^{*†} [†]Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Malaysia [‡]Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt [§]Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia [®]Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia [⊥]Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia

ABSTRACT

In this study, electrodeposition of cobalt oxide (Co_3O_4) from spent lithium-ion batteries is successfully enhanced by the magnetic field effect. In the presence of magnetic field, welldefined hierarchical Co_3O_4 nanostructures with higher electroactive surface area are formed during the electrodeposition process. Electrochemical analysis shows that the enhanced Co_3O_4 nanostructures exhibit excellent charge storage capabilities of 1273 F g⁻¹ at 1 A g⁻¹, approximately 4 times higher than the electrodeposited Co_3O_4 that is formed without magnetic field effect. It also reveals the high cycling stability of enhanced Co_3O_4 nanostructures, with 96% capacitance retention at 5000 charge discharge cycles. The results manifest the enhancement of Co_3O_4 recovery from spent lithium-ion batteries, which can be the potential electrode material for supercapacitor application.

Keywords: Magnetic Electrodeposition; cobalt oxide; supercapacitor electrode