801 research outputs found
On the hierarchy of partially invariant submodels of differential equations
It is noticed, that partially invariant solution (PIS) of differential
equations in many cases can be represented as an invariant reduction of some
PIS of the higher rank. This introduce a hierarchic structure in the set of all
PISs of a given system of differential equations. By using this structure one
can significantly decrease an amount of calculations required in enumeration of
all PISs for a given system of partially differential equations. An equivalence
of the two-step and the direct ways of construction of PISs is proved. In this
framework the complete classification of regular partially invariant solutions
of ideal MHD equations is given
Imaging Molecules from Within: Ultra-fast, {\AA}ngstr\"om Scale Structure Determination of Molecules via Photoelectron Holography using Free Electron Lasers
A new scheme based on (i) upcoming brilliant X-ray Free Electron Laser (FEL)
sources, (ii) novel energy and angular dispersive, large-area electron imagers
and (iii) the well-known photoelectron holography is elaborated that provides
time-dependent three-dimensional structure determination of small to medium
sized molecules with {\AA}ngstr\"om spatial and femtosecond time resolution.
Inducing molecular dynamics, wave-packet motion, dissociation, passage through
conical intersections or isomerization by a pump pulse this motion is
visualized by the X-ray FEL probe pulse launching keV photoelectrons within few
femtoseconds from specific and well-defined sites, deep core levels of
individual atoms, inside the molecule. On their way out the photoelectrons are
diffracted generating a hologram on the detector that encodes the molecular
structure at the instant of photoionization, thus providing 'femtosecond
snapshot images of the molecule from within'. Detailed calculations in various
approximations of increasing sophistication are presented and three-dimensional
retrieval of the spatial structure of the molecule with {\AA}ngstr\"om spatial
resolution is demonstrated. Due to the large photo-absorption cross sections
the method extends X-ray diffraction based, time-dependent structure
investigations envisioned at FELs to new classes of samples that are not
accessible by any other method. Among them are dilute samples in the gas phase
such as aligned, oriented or conformer selected molecules, ultra-cold ensembles
and/or molecular or cluster objects containing mainly light atoms that do not
scatter X-rays efficiently.Comment: 18 pages, 11 figure
Π€ΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΡΡ ΠΏΠ°ΠΊΠ΅ΡΡΠ² Π² ΡΠ°Π΄ΡΠΎΠΊΠ°Π½Π°Π»Π°Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ Π΄Π°Π½ΠΈΡ
Introduction. Effective data transmission speed in the radio data channels network is determined by the parameters of the exchange report on the data link layer and physical levels and the wave emission channel characteristics. For guaranteed delivery of packets the technology with the supervision of packages receiving validity by consumer is used. Errors availabilities in packets demand retransmission, which leads to a decrease the effective data transmission speed. Fragmentation of packets reduces the probability of an error in the packet, the delay of the fragment retransmission, which improves the effective transmission speed. Problem statement. The maximum packet length for data link layer and physical levels is determined according to the conditions of the effective network functioning in general, consequently the packet length with low values of bit error in the channel can be significantly less than optimal, and with large values of bit error the possibility to select the division fragments of the maximum length into equal parts exists, under the terms of improving effective transmission speed. The aim of this work is to build analytical model for points determination on the scale of probability of bit errors, where the length of packet fragments is necessary to be changed in order to better efficiency of data transmission speed. Theoretical results. Based on the analysis of data transmission report with a stoppage and expectations the analytical model of effective data transmission speed in the radio data channel with bit errors and random distribution is received. There is equation to calculate the bit errors probability at the points of the fragments length changing. The obtained analytical solutions of the equations allow calculating the value of the bit errors probability for any parameters of data transmission cycle. Also, analytical expressions for calculating the optimal fragments length with a given probability of bit errors and probability of bit errors for a given fragment length are obtained. Conclusion. Proposed analytical model and analytical calculations can be used on data link layer and physical levels of the channels with packet data transmission according to the ARQ SAW algorithm to select parameters of fragmentation depending on the bit errors in the channel.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ°ΠΊΠ΅ΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠΎΠΊΠ°Π½Π°Π»Π΅ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π΄Π°Π½Π½ΡΡ
. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π΄Π»ΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅ΡΠ° Π΄Π»Ρ ΠΊΠ°Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Π΅ΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ΅ΡΠΈ Π² ΡΠ΅Π»ΠΎΠΌ, ΡΠΎ Π΄Π»ΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅ΡΠ° ΠΏΡΠΈ ΠΌΠ°Π»ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π±ΠΈΡΠΎΠ²ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠ΅Π½ΡΡΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π°, Π° ΠΏΡΠΈ Π±ΠΎΠ»ΡΡΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π±ΠΈΡΠΎΠ²ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ Π²ΡΠ±ΠΈΡΠ°ΡΡ Π΄Π»ΠΈΠ½Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ Π½Π° ΡΠ°Π²Π½ΡΠ΅ ΡΠ°ΡΡΠΈ,ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄Π»Ρ Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠΈΠΊΠ»Π° ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° ARQ Ρ Stay And Wait, ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ Π±ΠΈΡΠΎΠ²ΡΡ
ΠΎΡΠΈΠ±ΠΎΠΊ ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π»ΡΡΡΠ΅ΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ.Π ΡΡΠ°ΡΡ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° Π°Π½Π°Π»ΡΡΠΈΡΠ½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΡΡ ΠΏΠ°ΠΊΠ΅ΡΡΠ² Π² ΡΠ°Π΄ΡΠΎΠΊΠ°Π½Π°Π»Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ Π΄Π°Π½ΠΈΡ
. Π’Π°ΠΊ ΡΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π° Π΄ΠΎΠ²ΠΆΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅ΡΡ Π΄Π»Ρ ΠΊΠ°Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ° ΡΡΠ·ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΠ²Π½ΡΠ² Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π° Π· ΡΠΌΠΎΠ² Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ ΠΌΠ΅ΡΠ΅ΠΆΡ Π² ΡΡΠ»ΠΎΠΌΡ, ΡΠΎ Π΄ΠΎΠ²ΠΆΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅ΡΡ ΠΏΡΠΈ ΠΌΠ°Π»ΠΈΡ
Π·Π½Π°ΡΠ΅Π½Π½Ρ Π±ΡΡΠΎΠ²ΠΎΡ ΠΏΠΎΡ
ΠΈΠ±ΠΊΠΈ Π² ΠΊΠ°Π½Π°Π»Ρ ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ Π·Π½Π°ΡΠ½ΠΎ ΠΌΠ΅Π½ΡΠΎΡ Π²ΡΠ΄ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΡ, Π° ΠΏΡΠΈ Π²Π΅Π»ΠΈΠΊΠΈΡ
Π·Π½Π°ΡΠ΅Π½Π½Ρ Π±ΡΡΠΎΠ²ΠΎΡ ΠΏΠΎΡ
ΠΈΠ±ΠΊΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΡΡΡΡ Π²ΠΈΠ±ΠΈΡΠ°ΡΠΈ Π΄ΠΎΠ²ΠΆΠΈΠ½Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡΠ² Π΄ΡΠ»Π΅Π½Π½ΡΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΡ Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ Π½Π° ΡΡΠ²Π½Ρ ΡΠ°ΡΡΠΈΠ½ΠΈ, Π·Π° ΡΠΌΠΎΠ²ΠΈ ΠΏΠΎΠ»ΡΠΏΡΠ΅Π½Π½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ ΡΠ²ΠΈΠ΄ΠΊΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ. Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π° Π°Π½Π°Π»ΡΡΠΈΡΠ½Π° ΠΌΠΎΠ΄Π΅Π»Ρ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ, Π΄Π»Ρ Π²ΠΈΠ±ΡΠ°Π½ΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡΠ² ΡΠΈΠΊΠ»Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ Π΄Π°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Ρ ARQ Π· Stay And Wait, ΡΠΎΠ·ΡΠ°Ρ
ΡΠ²Π°ΡΠΈ Π·Π½Π°ΡΠ΅Π½Π½Ρ ΠΉΠΌΠΎΠ²ΡΡΠ½ΠΎΡΡΡ Π±ΡΡΠΎΠ²ΠΈΡ
ΠΏΠΎΠΌΠΈΠ»ΠΎΠΊ ΠΏΡΠΈ ΡΠΊΠΈΡ
Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎ Π·ΠΌΡΠ½ΠΈΡΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΡΡ Π΄Π»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΠΊΡΠ°ΡΠΎΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ ΡΠ²ΠΈΠ΄ΠΊΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ
- β¦