801 research outputs found

    On the hierarchy of partially invariant submodels of differential equations

    Full text link
    It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. In this framework the complete classification of regular partially invariant solutions of ideal MHD equations is given

    Imaging Molecules from Within: Ultra-fast, {\AA}ngstr\"om Scale Structure Determination of Molecules via Photoelectron Holography using Free Electron Lasers

    Full text link
    A new scheme based on (i) upcoming brilliant X-ray Free Electron Laser (FEL) sources, (ii) novel energy and angular dispersive, large-area electron imagers and (iii) the well-known photoelectron holography is elaborated that provides time-dependent three-dimensional structure determination of small to medium sized molecules with {\AA}ngstr\"om spatial and femtosecond time resolution. Inducing molecular dynamics, wave-packet motion, dissociation, passage through conical intersections or isomerization by a pump pulse this motion is visualized by the X-ray FEL probe pulse launching keV photoelectrons within few femtoseconds from specific and well-defined sites, deep core levels of individual atoms, inside the molecule. On their way out the photoelectrons are diffracted generating a hologram on the detector that encodes the molecular structure at the instant of photoionization, thus providing 'femtosecond snapshot images of the molecule from within'. Detailed calculations in various approximations of increasing sophistication are presented and three-dimensional retrieval of the spatial structure of the molecule with {\AA}ngstr\"om spatial resolution is demonstrated. Due to the large photo-absorption cross sections the method extends X-ray diffraction based, time-dependent structure investigations envisioned at FELs to new classes of samples that are not accessible by any other method. Among them are dilute samples in the gas phase such as aligned, oriented or conformer selected molecules, ultra-cold ensembles and/or molecular or cluster objects containing mainly light atoms that do not scatter X-rays efficiently.Comment: 18 pages, 11 figure

    ЀрагмСнтація ΠΏΠ°ΠΊΠ΅Ρ‚Ρ–Π² Π² Ρ€Π°Π΄Ρ–ΠΎΠΊΠ°Π½Π°Π»Π°Ρ… ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– Π΄Π°Π½ΠΈΡ…

    Get PDF
    Introduction. Effective data transmission speed in the radio data channels network is determined by the parameters of the exchange report on the data link layer and physical levels and the wave emission channel characteristics. For guaranteed delivery of packets the technology with the supervision of packages receiving validity by consumer is used. Errors availabilities in packets demand retransmission, which leads to a decrease the effective data transmission speed. Fragmentation of packets reduces the probability of an error in the packet, the delay of the fragment retransmission, which improves the effective transmission speed. Problem statement. The maximum packet length for data link layer and physical levels is determined according to the conditions of the effective network functioning in general, consequently the packet length with low values of bit error in the channel can be significantly less than optimal, and with large values of bit error the possibility to select the division fragments of the maximum length into equal parts exists, under the terms of improving effective transmission speed. The aim of this work is to build analytical model for points determination on the scale of probability of bit errors, where the length of packet fragments is necessary to be changed in order to better efficiency of data transmission speed. Theoretical results. Based on the analysis of data transmission report with a stoppage and expectations the analytical model of effective data transmission speed in the radio data channel with bit errors and random distribution is received. There is equation to calculate the bit errors probability at the points of the fragments length changing. The obtained analytical solutions of the equations allow calculating the value of the bit errors probability for any parameters of data transmission cycle. Also, analytical expressions for calculating the optimal fragments length with a given probability of bit errors and probability of bit errors for a given fragment length are obtained. Conclusion. Proposed analytical model and analytical calculations can be used on data link layer and physical levels of the channels with packet data transmission according to the ARQ SAW algorithm to select parameters of fragmentation depending on the bit errors in the channel.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° аналитичСская модСль Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΏΠ°ΠΊΠ΅Ρ‚ΠΎΠ² Π² Ρ€Π°Π΄ΠΈΠΎΠΊΠ°Π½Π°Π»Π΅ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…. Π’Π°ΠΊ ΠΊΠ°ΠΊ максимальная Π΄Π»ΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅Ρ‚Π° для канального ΠΈ физичСского ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΈΠ· условий эффСктивной Ρ€Π°Π±ΠΎΡ‚Ρ‹ сСти Π² Ρ†Π΅Π»ΠΎΠΌ, Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΏΡ€ΠΈ ΠΌΠ°Π»Ρ‹Ρ… значСния Π±ΠΈΡ‚ΠΎΠ²ΠΎΠΉ ошибки Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ мСньшС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π°, Π° ΠΏΡ€ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… значСния Π±ΠΈΡ‚ΠΎΠ²ΠΎΠΉ ошибки прСдлагаСтся Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ максимальной Π΄Π»ΠΈΠ½Ρ‹ Π½Π° Ρ€Π°Π²Π½Ρ‹Π΅ части,ΠΏΡ€ΠΈ условии ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ эффСктивной скорости ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° аналитичСская модСль позволяСт для Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ†ΠΈΠΊΠ»Π° ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° ARQ с Stay And Wait, Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ вСроятности Π±ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… ошибок ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ для получСния Π»ΡƒΡ‡ΡˆΠ΅ΠΉ эффСктивной скорости ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ.Π’ статі Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Π° модСль Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†Ρ–Ρ— ΠΏΠ°ΠΊΠ΅Ρ‚Ρ–Π² Π² Ρ€Π°Π΄Ρ–ΠΎΠΊΠ°Π½Π°Π»Ρ– ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– Π΄Π°Π½ΠΈΡ…. Π’Π°ΠΊ як максимальна Π΄ΠΎΠ²ΠΆΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅Ρ‚Ρƒ для канального Ρ‚Π° Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ€Ρ–Π²Π½Ρ–Π² Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π° Π· ΡƒΠΌΠΎΠ² Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ ΠΌΠ΅Ρ€Π΅ΠΆΡ– Π² Ρ†Ρ–Π»ΠΎΠΌΡƒ, Ρ‚ΠΎ Π΄ΠΎΠ²ΠΆΠΈΠ½Π° ΠΏΠ°ΠΊΠ΅Ρ‚Ρƒ ΠΏΡ€ΠΈ ΠΌΠ°Π»ΠΈΡ… значСння Π±Ρ–Ρ‚ΠΎΠ²ΠΎΡ— ΠΏΠΎΡ…ΠΈΠ±ΠΊΠΈ Π² ΠΊΠ°Π½Π°Π»Ρ– ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π·Π½Π°Ρ‡Π½ΠΎ мСншою Π²Ρ–Π΄ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ—, Π° ΠΏΡ€ΠΈ Π²Π΅Π»ΠΈΠΊΠΈΡ… значСння Π±Ρ–Ρ‚ΠΎΠ²ΠΎΡ— ΠΏΠΎΡ…ΠΈΠ±ΠΊΠΈ ΠΏΡ€ΠΎΠΏΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ Π²ΠΈΠ±ΠΈΡ€Π°Ρ‚ΠΈ Π΄ΠΎΠ²ΠΆΠΈΠ½Ρƒ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ–Π² ділСнням ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ Π½Π° Ρ€Ρ–Π²Π½Ρ– частини, Π·Π° ΡƒΠΌΠΎΠ²ΠΈ ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Π½Ρ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ–. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Π° модСль дозволяє, для Π²ΠΈΠ±Ρ€Π°Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Ρ†ΠΈΠΊΠ»Ρƒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– Π΄Π°Π½ΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Ρƒ ARQ Π· Stay And Wait, Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ²Π°Ρ‚ΠΈ значСння ймовірності Π±Ρ–Ρ‚ΠΎΠ²ΠΈΡ… ΠΏΠΎΠΌΠΈΠ»ΠΎΠΊ ΠΏΡ€ΠΈ яких Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ Π·ΠΌΡ–Π½ΠΈΡ‚ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†Ρ–Ρ— для отримання ΠΊΡ€Π°Ρ‰ΠΎΡ— Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ–
    • …
    corecore