It is noticed, that partially invariant solution (PIS) of differential
equations in many cases can be represented as an invariant reduction of some
PIS of the higher rank. This introduce a hierarchic structure in the set of all
PISs of a given system of differential equations. By using this structure one
can significantly decrease an amount of calculations required in enumeration of
all PISs for a given system of partially differential equations. An equivalence
of the two-step and the direct ways of construction of PISs is proved. In this
framework the complete classification of regular partially invariant solutions
of ideal MHD equations is given