2,358 research outputs found

    Studying patterns of use of transport modes through data mining - Application to U.S. national household travel survey data set

    Get PDF
    Data collection activities related to travel require large amounts of financial and human resources to be conducted successfully. When available resources are scarce, the information hidden in these data sets needs to be exploited, both to increase their added value and to gain support among decision makers not to discontinue such efforts. This study assessed the use of a data mining technique, association analysis, to understand better the patterns of mode use from the 2009 U.S. National Household Travel Survey. Only variables related to self-reported levels of use of the different transportation means are considered, along with those useful to the socioeconomic characterization of the respondents. Association rules potentially showed a substitution effect between cars and public transportation, in economic terms but such an effect was not observed between public transportation and nonmotorized modes (e.g., bicycling and walking). This effect was a policy-relevant finding, because transit marketing should be targeted to car drivers rather than to bikers or walkers for real improvement in the environmental performance of any transportation system. Given the competitive advantage of private modes extensively discussed in the literature, modal diversion from car to transit is seldom observed in practice. However, after such a factor was controlled, the results suggest that modal diversion should mainly occur from cars to transit rather than from nonmotorized modes to transi

    No interactions between heparin and atacicept, an antagonist of B cell survival cytokines.

    Get PDF
    The TNF family ligands, B cell activating factor of the TNF family (BAFF, also known as B lymphocyte stimulator, BLyS) and a proliferation-inducing ligand (APRIL), share the transmembrane activator and calcium-modulator and cyclophilin ligand (CAML)-interactor (TACI) as one of their common receptors. Atacicept, a chimeric recombinant TACI/IgG1-Fc fusion protein, inhibits both ligands. TACI and APRIL also bind to proteoglycans and to heparin that is structurally related to proteoglycans. It is unknown whether the portion of TACI contained in atacicept can bind directly to proteoglycans, or indirectly via APRIL, and whether this could interfere with the anti-coagulant properties of heparin. Binding of atacicept and APRIL to proteoglycan-positive cells was measured by FACS. Activities of heparin and atacicept were measured with activated factor Xa inhibition and cell-based assays. Effects of heparin on circulating atacicept was monitored in mice. Atacicept did not bind to proteoglycan-positive cells, but when complexed to APRIL could do so indirectly via APRIL. Multimers of atacicept obtained after exposure to cysteine or BAFF 60-mer bound directly to proteoglycans. Atacicept alone, or in complex with APRIL, or in a multimeric form did not interfere with heparin activity in vitro. Conversely, heparin did not influence inhibition of BAFF and APRIL by atacicept and did not change circulating levels of atacicept. Lack of detectable interference of APRIL-bound or free atacicept on heparin activity makes it unlikely that atacicept at therapeutic doses will interfere with the function of heparin in vivo

    Averages of bb-hadron, cc-hadron, and τ\tau-lepton properties as of summer 2014

    Full text link
    This article reports world averages of measurements of bb-hadron, cc-hadron, and τ\tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CPCP violation parameters, parameters of semileptonic decays and CKM matrix elements.Comment: 436 pages, many figures and tables. Online updates available at http://www.slac.stanford.edu/xorg/hfag

    A comparative framework: how broadly applicable is a 'rigorous' critical junctures framework?

    Get PDF
    The paper tests Hogan and Doyle's (2007, 2008) framework for examining critical junctures. This framework sought to incorporate the concept of ideational change in understanding critical junctures. Until its development, frameworks utilized in identifying critical junctures were subjective, seeking only to identify crisis, and subsequent policy changes, arguing that one invariably led to the other, as both occurred around the same time. Hogan and Doyle (2007, 2008) hypothesized ideational change as an intermediating variable in their framework, determining if, and when, a crisis leads to radical policy change. Here we test this framework on cases similar to, but different from, those employed in developing the exemplar. This will enable us determine whether the framework's relegation of ideational change to a condition of crisis holds, or, if ideational change has more importance than is ascribed to it by this framework. This will also enable us determined if the framework itself is robust, and fit for the purposes it was designed to perform — identifying the nature of policy change

    Evidence for CP Violation in B0 -> D+D- Decays

    Get PDF
    We report measurements of the branching fraction and CP violation parameters in B0 -> D+D- decays. The results are based on a data sample that contains 535 x 10^6 BBbar pairs collected at the Upsilon(4S) resonance, with the Belle detector at the KEKB asymmetric-energy e+e- collider. We obtain [1.97 +- 0.20 (stat) +- 0.20 (syst)] x 10^(-4) for the branching fraction of B0 -> D+D-. The measured values of the CP violation parameters are: S = -1.13 +- 0.37 +- 0.09, A = 0.91 +- 0.23 +- 0.06, where the first error is statistical and the second is systematic. We find evidence of CP violation in B0 -> D+D- at the 4.1 sigma confidence level. While the value of S is consistent with expectations from other measurements, the value of the parameter A favors large direct CP violation at the 3.2 sigma confidence level, in contradiction to Standard Model expectations.Comment: 12 pages, 3 figures, submitted to PR

    Search for CP violation in the decays D(s)+→KS0π+D^+_{(s)} \to K_S^0\pi^+ and D(s)+→KS0K+D^+_{(s)} \to K_S^0K^+

    Full text link
    We have searched for CP violation in the charmed meson decays D(s)+→KS0π+D^{+}_{(s)}\to K^0_S\pi^+ and D(s)+→KS0K+D^{+}_{(s)}\to K^0_S K^+ using 673 fb−1^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+e−e^+e^- collider. No evidence for CP violation is observed. We report the most sensitive CP asymmetry measurements to date for these decays: ACPD+→KS0π+=(−0.71±0.19±0.20)A_{CP}^{D^+\to K^0_S\pi^+}=(-0.71\pm0.19\pm0.20)%, ACPDs+→KS0π+=(+5.45±2.50±0.33)A_{CP}^{D^+_s\to K^0_S\pi^+}=(+5.45\pm2.50\pm0.33)%, ACPD+→KS0K+=(−0.16±0.58±0.25)A_{CP}^{D^+\to K^0_S K^+}=(-0.16\pm0.58\pm0.25)%, and ACPDs+→KS0K+=(+0.12±0.36±0.22)A_{CP}^{D^+_s\to K^0_S K^+}=(+0.12\pm0.36\pm0.22)%, where the first uncertainties are statistical and the second are systematic

    Observation of Bs->Ds(*)+Ds(*)- using e+e- collisions and a determination of the Bs-Bsbar width difference \Delta\Gamma_s

    Full text link
    We have made the first observation of Bs->Ds(*)+Ds(*)- decays using 23.6 fb-1 of data recorded by the Belle experiment running on the Upsilon(5S) resonance. The branching fractions are measured to be B(B^0_s\ra D^+_s D^-_s) = (1.0\,^{+0.4}_{-0.3}\,^{+0.3}_{-0.2})%, B(B^0_s\ra D^{*\pm}_s D^{\mp}_s) = (2.8\,^{+0.8}_{-0.7}\,\pm 0.7)%, and B(B^0_s\ra D^{*+}_s D^{*-}_s) = (3.1\,^{+1.2}_{-1.0}\,\pm 0.8)%; the sum is B(B^0_s\ra D^{(*)+}_s D^{(*)-}_s) = (6.9\,^{+1.5}_{-1.3}\,\pm 1.9)%. Assuming Bs->Ds(*)+Ds(*)- saturates decays to CP-even final states, the branching fraction determines the ratio \Delta\Gamma_s/cos(\phi), where \Delta\Gamma_s is the difference in widths between the two Bs-Bsbar mass eigenstates, and \phi is a CP-violating weak phase. Taking CP violation to be negligibly small, we obtain \Delta\Gamma_s/\Gamma_s = 0.147^{+0.036}_{-0.030}(stat.)^{+0.044}_{-0.042}(syst.), where \Gamma_s is the mean decay width.Comment: 13 pages, 2 figures, 2 tables. v2: text added for clarification, version published in Phys. Rev. Letter
    • 

    corecore