14 research outputs found

    Scalable haloscopes for axion dark matter detection in the 30 ”eV range with RADES

    Get PDF
    RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30ÎŒeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.We thank Ciaran O’Hare for his generous and publicly available compilation of axion bounds https://github.com/cajohare /AxionLimits/. This work has been funded by the Spanish Ministerio de EconomĂ­a, Industria y Competitividad – Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under project FPA-2016-76978, and was supported by the CERN Doctoral Studentship programme. The research leading to these results has received funding from the European Research Council and BD, JG and SAC acknowledge support through the European Research Council under grant ERC-2018-StG-802836 (AxScale project). IGI acknowledges also support from the European Research Council (ERC) under grant ERC-2017-AdG-788781 (IAXO+ project). JR has been supported by the Ramon y Cajal Fellowship 2012-10597, the grant PGC2018-095328-B-I00(FEDER/Agencia estatal de investigaciÂŽon) and FSE-DGA2017-2019-E12/7R (Gobierno de AragĂłn/FEDER) (MINECO/FEDER), the EU through the ITN “Elusives” H2020-MSCA-ITN-2015/674896 and the Deutsche Forschungsgemeinschaft under grant SFB-1258 as a Mercator Fellow. CPG was supported by PROMETEO II/2014/050 of Generalitat Valenciana, FPA2014-57816-P of MINECO and by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreements 690575 and 674896. AM is supported by the European Research Council under Grant No. 742104. We wish also to thank our colleagues at CAST and at CERN, in particular Marc Thiebert from the coating lab, Sergio Calatroni for many useful discussions, as well as the whole team of the CERN Central Cryogenic Laboratory for their support and advice in specific aspects of the project

    Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators

    Get PDF
    The electromagnetic coupling axion–photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion–photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green’s functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy–Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.This work is part of the project PID2019-108122GB-C33 and the grant FPI BES-2017-079787 (under project FPA-2016-76978-C3-2-P), both funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. JG acknowledges support through the European Research Council under grant ERC-2018-StG-802836 (AxScale project).Peer reviewe

    Thin Film (High Temperature) Superconducting Radiofrequency Cavities for the Search of Axion Dark Matter

    Get PDF
    5 pages, 6 figures. v2: minor updates after referee comments, matches published version in IEEEThe axion is a hypothetical particle which is a candidate for cold dark matter. Haloscope experiments directly search for these particles in strong magnetic fields with RF cavities as detectors. The Relic Axion Detector Exploratory Setup (RADES) at CERN in particular is searching for axion dark matter in a mass range above 30 ÎŒ\mueV. The figure of merit of our detector depends linearly on the quality factor of the cavity and therefore we are researching the possibility of coating our cavities with different superconducting materials to increase the quality factor. Since the experiment operates in strong magnetic fields of 11 T and more, superconductors with high critical magnetic fields are necessary. Suitable materials for this application are for example REBa2_2Cu3_3O7−x_{7-x}, Nb3_3Sn or NbN. We designed a microwave cavity which resonates at around 9~GHz, with a geometry optimized to facilitate superconducting coating and designed to fit in the bore of available high-field accelerator magnets at CERN. Several prototypes of this cavity were coated with different superconducting materials, employing different coating techniques. These prototypes were characterized in strong magnetic fields at 4.2 K.This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730871 (ARIES-TNA). BD and JG acknowledge funding through the European Research Council under grant ERC-2018-StG-802836 (AxScale). We also acknowledge funding via the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under project PID2019- 108122GB-C33, and the grant FPI BES-2017-079787 (under project FPA2016-76978-C3-2-P). Furthermore we acknowledge support from SuMaTe RTI2018-095853-B-C21 from MICINN co-financed by the European Regional Development Fund, Center of Excellence award Severo Ochoa CEX2019- 000917-S and CERN under Grant FCCGOV-CC-0208 (KE4947/ATS).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    First results of the CAST-RADES haloscope search for axions at 34.67 ÎŒeV

    Get PDF
    We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67ÎŒeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of gaÎł & 4 × 10−13 GeV−1 over a mass range of 34.6738ÎŒeV < ma < 34.6771ÎŒeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25ÎŒeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavitiesWe wish to thank our colleagues at CERN, in particular Marc Thiebert from the coating lab, as well as the whole team of the CERN Central Cryogenic Laboratory for their support and advice in speci c aspects of the project. We thank Arefe Abghari for her contributions as the project's summer student during 2018. This work has been funded by the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under project FPA-2016-76978-C3-2-P and PID2019-108122GB-C33, and was supported by the CERN Doctoral Studentship programme. The research leading to these results has received funding from the European Research Council and BD, JG and SAC acknowledge support through the European Research Council under grant ERC-2018-StG-802836 (AxScale project). BD also acknowledges fruitful discussions at MIAPP supported by DFG under EXC-2094 { 390783311. IGI acknowledges also support from the European Research Council (ERC) under grant ERC-2017-AdG-788781 (IAXO+ project). JR has been supported by the Ramon y Cajal Fellowship 2012-10597, the grant PGC2018-095328-B-I00(FEDER/Agencia estatal de investigaci on) and FSE-GA2017-2019-E12/7R (Gobierno de AragĂłn/FEDER) (MINECO/FEDER), the EU through the ITN \Elusives" H2020-MSCA-ITN-2015/674896 and the Deutsche Forschungsgemeinschaft under grant SFB-1258 as a Mercator Fellow. CPG was supported by PROMETEO II/2014/050 of Generalitat Valenciana, FPA2014-57816-P of MINECO and by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreements 690575 and 674896. AM is supported by the European Research Council under Grant No. 742104. Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344

    Study of Thermal DiïŹ€usivity of Dielectric-Metal Sandwich Structures at Low Temperatures

    No full text
    The objectives of the thesis is to study the AC measurement method and use it to obtain the thermal diffusivity for sandwich structures that consist of different materials in series. Two sandwich structures were investigated, varying in the amount and the material of the interfaces. It was relevant to detect which of these structures can transport heat loads the fastest to the mixing chamber of a dilution refrigerator in order to decide which sandwich structure is most suitable for AEgIS. Based on the measurements performed in the study, many characteristics of the AC method were detected. Two values, obtained with the measurement of a sinusoidal heat signal, can be analyzed to determine the thermal diffusivity - the phase shift and the amplitude attenuation. It has been proven that the phase shift method is not suitable for measurements on the sandwich in a dilution refrigerator, since an AC resistance bridge is necessary for these studies. The resistance bridge causes an additional phase shift. More- over, the accuracy of the method is not high enough to measure the small phase shifts expected for the samples. The frequency dependence of the method is clearly visible for all samples and a correct measurement is only possible in a small frequency range where the thermal diffusivity is constant. Ideas where the frequency dependence originates from and how the constant "plateau" could be extended to lower frequencies were discussed. The thermal diffusivity for both sandwich structures was measured between 3 K and 30 K and it was evident that the thermal diffusivity is the same for both sandwich mock-ups at about 3 K. Because of different sensor distances for S1 and S2 the same thermal diffusivity means a higher thermal boundary resistance of about factor 2 for sandwich S2 caused by the additional metallic boundarie

    Superconducting beam charge monitors for antiproton storage rings

    No full text
    A Cryogenic Current Comparator (CCC) is a new type of instruments for monitoring charged beams like ions or antiprotons. Using superconducting effects is it possible to create a nondestructive, contactless and easy to calibrate beam measurement system with a high current resolution in amplitude and time. The Meissner effect enables an effective magnetic shielding of the system. The screening current enables creation of DC-transformers and therefore a DC-current measurement system. The combination of two Josephson-junctions and coils form a superconducting quantum interference device (SQUID) in an analog magnetic feedback of the flux-locked loop (FLL), which is linearizing the SQUID’s transfer function. The performance of the CCC system opens beam currents range between 1 nA and 20 ”A. Installations at the Antiproton Decelerator at CERN and GSI in Darmstadt shows a strong correlation between SEM/longitudinal-Schottky and CCC signals including the known spill pattern but with a better signal to noise ratio

    Versatile Beamline Cryostat for the Cryogenic Current Comparator (CCC) for FAIR

    No full text
    The Cryogenic Current Comparator (CCC) extends the measurement range of traditional non-destructive current monitors used in accelerator beamlines down to a few nano-amperes of direct beam current. This is achieved by a cryogenic environment of liquid helium around the beamline, in which the beam’s magnetic field is measured with a Superconducting Quantum Interference Device (SQUID), which is itself enclosed in a superconducting shielding structure. For this purpose, a versatile UHV-beamline cryostat was designed for the CCCs at FAIR and is currently in production. It is built for long-term autonomous operation with a closed helium re-liquefaction cycle and with good access to all inner components. The design is supported by simulations of the cryostat’s mechanical eigenmodes to minimize the excitation by vibrations in an accelerator environment. A prototype at GSI has demonstrated the self-contained cryogenic operation in combination with a 15 l/day re-liquefier. The cryostat will be used in CRYRING to compare the FAIR-CCC-X with newly developed CCC-types for 150 mm beamlines. Both which will supply a nA current reading during commissioning and for the experiments

    Beam Intensity Monitoring with nA Resolution - the Cryogenic Current Comparator (CCC)

    No full text
    The storage of low current beams as well as the long extraction times from the synchrotrons at FAIR require non-destructive beam intensity monitoring with a current resolution of nanoampere. To fulfill this requirement, the concept of the Cryogenic Current Comparator (CCC), based on the low temperature SQUID, is used to obtain an extremely sensitive beam current transformer. During the last years, CCCs have been installed to do measurements of the spill structure in the extraction line of GSI SIS18 and for current monitoring in the CERN Antiproton Decelerator. From these experiences lessons can be learned to facilitate further developments. The goal of the ongoing research is to improve the robustness of the CCC towards external influences, such as vibrations, stray fields and He-pressure variations, as well as to develop a cost-efficient concept for the superconducting shield and the cryostat

    Next generation Cryogenic Current Comparator (CCC) for nA intensity measurement

    No full text
    A Cryogenic Current Comparator (CCC) is an extremely sensitive DC-Beam Transformer based on superconducting SQUID technology. Recently, a CCC without a toroidal core and with an axially oriented magnetic shielding has been developed at the Institute of Photonic Technologies (IPHT) Jena/Germany. It represents a compact and light-weight alternative to the ‘classical’ CC, which was originally developed at PTB Braunschweig/Germany and is successfully in operation in accelerators at GSI and CERN. Excellent low-frequency noise performance was demonstrated with a prototype of this new CCC-type. Current measurements and further tests are ongoing, first results are presented together with simulation calculations for the magnetic shielding. The construction from lead as well as simplified manufacturing results in drastically reduced costs compared to formerly used Nb-CCCs. Reduced weight also puts less constraints on the cryostat. Based on highly sensitive SQUIDs, the new prototype device shows a current sensitivity of about 6 pA/Hz1/2^{1/2} in the white noise region. The measured and calculated shielding factor is ~135 dB. These values, together with a significant cost reduction - resulting also from a compact cryostat design - opens up the way for widespread use of CCCs in modern accelerator facilities
    corecore