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a b s t r a c t

The electromagnetic coupling axion–photon in a microwave cavity is revisited with the Boundary
Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been
applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this
scenario, the electromagnetic field generated by the axion–photon coupling can be assumed to be
driven by equivalent electrical charge and current densities. These densities have been inserted in the
general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as
an integral involving the Dyadic Green’s functions of the cavity (under Coulomb gauge) as well as
such densities. This method is able to take into account any arbitrary spatial and temporal variation of
both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the
axion current source, which represents the coupling between the axion field and the resonant modes
of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a
function of frequency along a broad band and without Cauchy–Lorentz approximations, obtaining the
spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close
to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the
signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting
issue for future analysis where the axion phase is an important parameter.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The search of dark matter axions in the galactic halo has un-
ergone an increasing activity in the last twenty years, following
he experimental concept of a resonant haloscope from Sikivie
1,2] with the initial [3] (and still ongoing [4]) work of ADMX,
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and continuing with other collaborations such as KLASH [5] at
lower masses or HAYSTACK [6], ORGAN [7], QUAX [8], CAPP [9],
or RADES [10] at higher ones. A non-resonant dielectric haloscope
(MADMAX) [11] has been proposed for even higher frequencies.
All these experiments set the haloscopes realm currently in the
1–100 µeV axion mass range (240 MHz–24 GHz in terms of
frequency). A general review of these experiments and proper
references can be found in [12].

Although the Lorentzian shape as an approximation of the
resonant curve [13] is well-known in any mode supported by
RF cavities, the expression of the peak value of the detected
power [14] is normally used for assessing the axion sensitivity
of the proposed (or developed) experiment. In this paper we de-
velop a complete semi-analytical solution for obtaining, through
the BI-RME 3D method, the complex (magnitude and phase)
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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w∫
urrent extracted from a low-loss cavity, where the axion–photon
oupling due to the Primakoff effect takes place and, from it, the
xtracted RF power for a wide spectrum. This broadband rigorous
esult is specially interesting when neighboring modes are close
o the axion one and can interfere with it. This situation can
ccur in large cavities with a high number of resonant modes or
n multi-cavity haloscopes [15], where different configurations of
he main mode can resonate at close proximity with the desired
xion resonance.
The paper is organized as follows. Section 2 provides a gen-

ral view and detailed formulation of the BI-RME 3D method in
esonant cavities. In Section 3, the electromagnetic analysis of
he axion–photon coupling under a static magnetic field is intro-
uced, and this allows to apply the BI-RME 3D method to cavity
aloscopes in Section 4, specifically to two types of haloscopes:
he cylindrical cavity described in [16] and the rectangular multi-
avity reported in [10]. Finally, Section 5 summarizes the main
onclusions of this work.

. The BI-RME 3D method

The Boundary Integral Resonant Mode Expansion (BI-RME)
ethod was developed during the eighties and nineties at the
niversità degli Studio di Pavia (Italy). It represents an advanced
ull-wave modal technique for the accurate and efficient electro-
agnetic analysis of microwave arbitrarily-shaped waveguides
nd cavities [17,18] including metallic [19,20] and dielectric ob-
tacles [21–23] of arbitrary geometry. The complete formulation
nd the different implementations are very extensive and can be
ound in the technical literature [24].

.1. Lossless cavity

Our starting point is to suppose that we have a microwave
avity resonator with arbitrary shape [25]. We will suppose that
he volume of the cavity V is simply connected. Inside the cavity
e will assume that there is vacuum characterized by the electric
ermittivity ε0 and the magnetic permeability µ0 of free space;
ielectric and magnetic media can be accounted in the BI-RME
heory, but they will not be considered in this work.

Let us consider a microwave resonant cavity with an arbitrary
umber of access waveguide ports P , as represented in Fig. 1.
e will suppose that the conducting walls of the structure are

ossless. The time-harmonic (phasors) electric and magnetic fields
n such cavity originated by inner volumetric electric sources J⃗
nd magnetic current sheets M⃗ can be expressed in terms of the
lectric and magnetic scalar and dyadic potentials (considering
he Coulomb’s gauge) as the following hybrid representation,

⃗(r⃗) =
η

jk
∇

∫
V
ge(r⃗, r⃗ ′)∇ ′

· J⃗(r⃗ ′) dV ′

− jkη
∫
V
G⃗A(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′

−

−

∫
S
∇ × G⃗F(r⃗, r⃗ ′) · M⃗(r⃗ ′) dS ′

+
1
2
n⃗ × M⃗

⃗ (r⃗) =
1
jkη

∇s

∫
S
gm(r⃗, r⃗ ′)∇ ′

· M⃗(r⃗ ′) dS ′

−
jk
η

∫
S
G⃗F(r⃗, r⃗ ′) · M⃗(r⃗ ′) dS ′

+

+

∫
V

∇ × G⃗A(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′ (1)

where η =
√

µ0/ε0 ≈ 377
mOmega is the vacuum impedance; k = ω/c is the free space
2

Fig. 1. Arbitrarily-shaped microwave resonant cavity connected to different
access waveguide ports (rectangular, coaxial and circular).

wavenumber, ω being the angular frequency (ω = 2π f ) and
c = 1/

√
µ0 ε0 is the speed of light in vacuum; j =

√
−1 is

he imaginary unit; n⃗ is the inward unitary normal vector to the
avity surface; ∇s is the surface divergence operator [26]; ge(r⃗, r⃗ ′)
nd gm(r⃗, r⃗ ′) are the electric and magnetic static scalar potentials
reen’s functions of the cavity under Coulomb gauge, respec-
ively; and G⃗A(r⃗, r⃗ ′) and G⃗F(r⃗, r⃗ ′) are the electric and magnetic
yadic potentials Green’s functions of the cavity under Coulomb
auge, respectively. In the Appendix we have summarized the
ost relevant properties of these Green’s functions.
Next we insert the modal expansions of both electric and

agnetic dyadic potential Green’s functions described in the Ap-
endix in (1), obtaining

⃗(r⃗) =
−jη
k

∇

∫
V
ge(r⃗, r⃗ ′)∇ ′

· J⃗(r⃗ ′) dV ′

− jkη
∫
V
G⃗A

0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′
−

−

∫
S
∇ × G⃗F

0(r⃗, r⃗ ′) · M⃗(r⃗ ′) dS ′
+

1
2
n⃗ × M⃗ +

+ (−j)k3η
+∞∑
m=1

E⃗m(r⃗)
k2m(k2m − k2)

∫
V
E⃗m(r⃗ ′) · J⃗(r⃗ ′) dV ′

+

+ (−k2)
+∞∑
m=1

E⃗m(r⃗)
km(k2m − k2)

∫
S
H⃗m(r⃗ ′) · M⃗(r⃗ ′) dS ′

H⃗(r⃗) =
−j
kη

∇s

∫
S
gm(r⃗, r⃗ ′)∇ ′

· M⃗(r⃗ ′) dS ′

−
jk
η

∫
S
G⃗F

0(r⃗, r⃗ ′) · M⃗(r⃗ ′) dS ′
+

+

∫
V

∇ × G⃗A
0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′

−
jk3

η

+∞∑
m=1

H⃗m(r⃗)
k2m(k2m − k2)

∫
S
H⃗m(r⃗ ′) · M⃗(r⃗ ′) dS ′

+

+ k2
+∞∑
m=1

H⃗m(r⃗)
km(k2m − k2)

∫
V
E⃗m(r⃗ ′) · J⃗(r⃗ ′) dV ′ (2)

Next, we need to model the excitation of the cavity using
equivalent surface magnetic currents defined on the access ports
shown in Fig. 1. For this purpose, we first describe the modes
of the access waveguide ports. We will suppose that we have P
ports; in principle they might be different (rectangular, circular,
coaxial, etc.). The waveguide port (ν) is characterized by the
electric and magnetic vector mode functions e⃗(ν)n and h⃗(ν)

n [27]
hich satisfy the following relationships:

e⃗(µ)
m · e⃗(ν)n dS =

∫
h⃗(µ)
m · h⃗(ν)

n dS = δm,n δµ,ν

CS CS
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n⃗ × e⃗(ν)n = h⃗(ν)
n ; µ, ν = 1...P

This set of modes allows to express the transverse electromag-
netic field in each waveguide port as a superposition of the vector
mode functions:

E⃗(ν)
transverse =

+∞∑
n=1

V (ν)
n e⃗(ν)n ; H⃗ (ν)

transverse =

+∞∑
n=1

I (ν)n h⃗(ν)
n

where V (ν)
n and I (ν)n are the voltage and current modal amplitudes

of the n mode at the port (ν), which are related by the modal
impedance (admittance), Z (ν)

n (Y (ν)
n ), as follows:

Z (ν)
n =

1

Y (ν)
n

=
V (ν)
n

I (ν)n

hus the magnetic current sheets defined on the waveguide ports
an be expressed in the form [18]:

⃗ = −

P∑
ν=1

n⃗ ×

+∞∑
n=1

V (ν)
n e⃗(ν)n = −

P∑
ν=1

+∞∑
n=1

V (ν)
n h⃗(ν)

n (3)

Next step in the BI-RME 3D formulation is to define the modal
amplitudes am as

am ≡
1

k2m(k2m − k2)

(
jkη

∫
V
E⃗m(r⃗ ′) · J⃗(r⃗ ′) dV ′

− km
P∑

ν=1

Nν∑
n=1

V (ν)
n

∫
S(ν)

H⃗m(r⃗ ′) · h⃗(ν)
n (r⃗ ′) dS ′

)
which are derived from (2) along with (3). After some algebraic
manipulations, we find

E⃗(r⃗) =
1
2

P∑
ν=1

+∞∑
n=1

V (ν)
n e⃗n +

−jη
k

∇

∫
V
ge(r⃗, r⃗ ′)∇ ′

· J⃗(r⃗ ′) dV ′
+

+ (−jkη)
∫
V
G⃗A

0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′
− k2

+∞∑
m=1

am E⃗m(r⃗) +

+

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(ν)

∇ × G⃗F
0(r⃗, r⃗ ′) · h⃗(ν)

n (r⃗ ′) dS ′

H⃗(r⃗) =
j
kη

P∑
ν=1

+∞∑
n=1

V (ν)
n ∇s

∫
S(ν)

gm(r⃗, r⃗ ′)∇ ′

s · h⃗(ν)
n (r⃗ ′) dS ′

+

+
jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(ν)

G⃗F
0(r⃗, r⃗ ′) · h⃗(ν)

n (r⃗ ′) dS ′

+

∫
V

∇ × G⃗A
0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′

+

+
−jk
η

+∞∑
m=1

am km H⃗m(r⃗)

+
−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

H⃗m(r⃗)
k2m

∫
S(ν)

H⃗m(r⃗ ′) · h⃗(ν)
n (r⃗ ′) dS

Now we apply the boundary conditions: the tangential magnetic
field on each waveguide port has to be a continuous function,
because there are not any surface electric current defined at the
port interface. As a consequence,

H⃗(r⃗)|tangential on S(ν) =

P∑
ν=1

+∞∑
n=1

I (ν)n h⃗(ν)
n (r⃗)

Projecting both sides by the magnetic vector modal functions of
the ports, and applying the orthonormalization condition among
3

them, we find∫
S(ν)

H⃗(r⃗)|tang on S(ν) · h⃗(µ)
l (r⃗) dS

=

∫
S(ν)

P∑
ν=1

+∞∑
n=1

I (ν)n h⃗(ν)
n (r⃗) · h⃗(µ)

l (r⃗) dS = I (µ)
l

so the modal current amplitudes are expressed as

I (µ)
l =

∫
S(µ)

(
j
kη

P∑
ν=1

+∞∑
n=1

V (ν)
n ∇s

∫
S(ν)

gm(r⃗, r⃗ ′)∇ ′

s · h⃗(ν)
n (r⃗ ′) dS ′

)
· h⃗(µ)

l (r⃗) dS +

+

∫
S(µ)

(
jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(ν)

G⃗F
0(r⃗, r⃗ ′) · h⃗(ν)

n (r⃗ ′) dS ′

)
· h⃗(µ)

l (r⃗) dS +

+

∫
S(µ)

(∫
V

∇ × G⃗A
0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′

)
· h⃗(µ)

l (r⃗) dS +

+

∫
S(µ)

(
−jk
η

+∞∑
m=1

am km H⃗m(r⃗)

)
· h⃗(µ)

l (r⃗) dS +

∫
S(µ)

(
−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

H⃗m(r⃗)
k2m

∫
S(ν)

H⃗m(r⃗ ′) · h⃗(ν)
n (r⃗ ′) dS ′

)
· h⃗(µ)

l (r⃗) dS

he surface divergence theorem (similar to the divergence the-
rem or Gauss theorem) [26,28] has to be applied to the first
ntegral, and after some algebraic manipulations we get

(µ)
l =

−j
kη

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(µ)

dS
∫
S(ν)

dS ′

(
∇s · h⃗(µ)

l (r⃗)
)

× gm(r⃗, r⃗ ′)
(
∇

′

s · h⃗(ν)
n (r⃗ ′)

)
+

+
jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

∫
S(µ)

dS
∫
S(ν)

dS ′ h⃗(µ)
l (r⃗)

·G⃗F
0(r⃗, r⃗ ′) · h⃗(ν)

n (r⃗ ′) +

+

∫
S(µ)

dS h⃗(µ)
l (r⃗) ·

(∫
V

∇ × G⃗A
0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′

)
+

+
−jk
η

+∞∑
m=1

am km

∫
S(µ)

dS h⃗(µ)
l (r⃗) · H⃗m(r⃗) +

+
−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

+∞∑
m=1

1
k2m

∫
S(µ)

dS h⃗(µ)
l (r⃗) · H⃗m(r⃗)

×

∫
S(ν)

dS ′ h⃗(ν)
n (r⃗ ′) · H⃗m(r⃗ ′)

In order to simplify this expression we define several matrices:

F (ν)
mn ≡

∫
S(ν)

H⃗m(r⃗) · h⃗(ν)
n (r⃗) dS

G(µ,ν)
ln ≡

∫
S(µ)

dS
∫
S(ν)

dS ′

(
∇s · h⃗(µ)

l (r⃗)
)

gm(r⃗, r⃗ ′)
(
∇

′

s · h⃗(ν)
n (r⃗ ′)

)
T (µ,ν)
ln ≡

∫
S(µ)

dS
∫
S(ν)

dS ′ h⃗(µ)
l (r⃗) · G⃗F

0(r⃗, r⃗ ′) · h⃗(ν)
n (r⃗ ′)

just obtaining

I (µ)
l =

−j
kη

P∑
ν=1

+∞∑
n=1

V (ν)
n G(µ,ν)

ln +
jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n T (µ,ν)

ln +

+

∫
S(µ)

dS h⃗(µ)
l (r⃗) ·

(∫
V

∇ × G⃗A
0(r⃗, r⃗ ′) · J⃗(r⃗ ′) dV ′

)
+

+
−jk
η

+∞∑
m=1

am km F (µ)
ml +

−jk
η

P∑
ν=1

+∞∑
n=1

V (ν)
n

×

+∞∑ 1
k2

F (µ)
ml F (ν)

mn

m=1 m
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P

P

B
t

he integral containing the curl operator has to be properly
reated using the properties of the dyadic Green functions; after
nserting the modal coefficients am, we obtain

(µ)
l =

P∑
ν=1

+∞∑
n=1

V (ν)
n

(
−j
kη

G(µ,ν)
ln

+
jk
η

T (µ,ν)
ln +

jk3

η

+∞∑
m=1

F (µ)
ml F

(ν)
mn

k2m(k2m − k2)

)
+

+

+∞∑
m=1

F (µ)
ml

km

∫
V
E⃗m(r⃗ ′) · J⃗(r⃗ ′) dV ′

+ k2
+∞∑
m=1

F (µ)
ml

km(k2m − k2)

∫
V
E⃗m(r⃗ ′) · J⃗(r⃗ ′) dV ′ .

The first term is the BI-RME 3D expression of the generalized
admittance matrix [18], which is defined as

Y (µ,ν)
ln ≡

−j
kη

G(µ,ν)
ln +

jk
η

T (µ,ν)
ln +

jk3

η

+∞∑
m=1

F (µ)
ml F

(ν)
mn

k2m(k2m − k2)

hich completely characterizes the microwave device, and can
e viewed as an alternative representation to the generalized
cattering matrix used by other authors [29,30]. Thus the previous
quation can be expressed in terms of the generalized admittance
atrix as follows:

(µ)
l =

P∑
ν=1

+∞∑
n=1

Y (µ,ν)
ln V (ν)

n +

+∞∑
m=1

F (µ)
ml

km
k2m − k2

∫
V
E⃗m(r⃗ ′)· J⃗(r⃗ ′) dV ′ .

(4)

This expression has been derived from the frequency domain
Maxwell equations and it is exact. However, in a practical im-
plementation of the algorithm both infinite series have to be
truncated. The first infinite series related with the number of
modes in each access port will be truncated to Nν waveguide
modes: typically we will have to include all the propagative
modes of the waveguide and the first evanescent modes. For the
second series, related to the cavity modes, we will have to include
the first M resonant modes existing in the analyzed frequency
band. Thus, we will rewrite (4) as

I (µ)
l =

P∑
ν=1

Nν∑
n=1

Y (µ,ν)
ln V (ν)

n +

M∑
m=1

F (µ)
ml

km
k2m − k2

∫
V
E⃗m(r⃗ ′)· J⃗(r⃗ ′) dV ′ .

(5)

Finally we define the following modal current sources:

Ĩ (µ)
l ≡ −

M∑
m=1

F (µ)
ml

km
k2m − k2

∫
V
E⃗m(r⃗ ′) · J⃗(r⃗ ′) dV ′ (6)

and

I (µ) ′
l ≡

P∑
ν=1

Nν∑
n=1

Y (µ,ν)
ln V (ν)

n

which allow to rewrite (5) in this form:

I (µ)
l = I (µ) ′

l − Ĩ (µ)
l (7)

A possible interpretation of this equation is shown in Fig. 2,
and it can be easily understood in the context of classical Net-
work Theory as reported in [31]: the set of current sources
Ĩ (µ)
l drives the cavity resonator characterized by its generalized
admittance matrix Y (µ,ν). It is worth to note that with the present
ln t

4

Fig. 2. Multimode equivalent network of a cavity resonator excited by an axion
field. We have represented the port (µ).

formalism we have been able to describe the excitation of a
cavity with a volumetric charge and current distribution, existing
within the resonator due to the axion–photon coupling. More-
over, commercial software codes are not able to simulate the
axion–photon excitation of a microwave passive component. For
a better comprehension, we will apply the present formulation to
two examples in Section 4.

2.2. Cavity with lossy walls

Considering a cavity with finite electrical conductivity σ , the
ffect of the Ohmic losses has to be accounted in the BI-RME 3D
echnique [25]. For such purpose we will use the perturbation
ethod proposed in several books [29,30,32–34]. Thus, the loss-

ess eigenvalues of the resonator km have to be replaced by the
perturbed eigenvalues of the lossy cavity κm:

km → κm ≈ km (1 −
1

2Qm
) + j

km
2Qm

where Qm is the unloaded quality factor of the m resonant mode
efined as Qm = ωm Um/Pcm , ωm = km c being the angular
requency of the m mode, Um is the total time-average energy
electric and magnetic) stored in the cavity by the m mode, and
cm is the power loss of the m mode, which is expressed as

cm =
Rs

2

∫
SV

∥H⃗m∥
2 dS

where Rs = 1/(σδ) is the surface resistance of the conducting
walls, and δ is the skin depth given by δ =

√
2/(ω µσ ) at

room temperature, µ being the magnetic permeability of the
conducting walls.

3. Electromagnetic analysis of the interaction axion–photon

Time-domain Maxwell’s equations in SI units with the axion–
photon interaction in the vacuum are given by

∇ · (E⃗ − c gaγ γ a B⃗) =
ϱe

ε0

∇ · B⃗ = 0

∇ × E⃗ = −
∂ B⃗
∂ t

∇ × (c B⃗ + gaγ γ a E⃗) =
1
c

∂

∂ t
(E⃗ − c gaγ γ a B⃗) + c µ0 J⃗e

where gaγ γ is the two-photon coupling to an axion field constant.
y assuming that the axion–photon interaction slightly modify
he electromagnetic field, these equations can be decoupled into
wo parts [16]: one part for the external electromagnetic field E⃗ ,
e
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B⃗e generated by the classical charge ϱe and current J⃗e densities,
given by

∇ · E⃗e =
ϱe

ε0

∇ · B⃗e = 0

∇ × E⃗e = −
∂ B⃗e

∂ t

× B⃗e =
1
c2

∂ E⃗e
∂ t

+ µ0 J⃗e (8)

and another set of Maxwell’s equations for the reacted fields E⃗a,
B⃗a:

∇ · (E⃗a − c gaγ γ a B⃗e) = 0
∇ · B⃗a = 0

∇ × E⃗a = −
∂ B⃗a

∂ t

∇ × (B⃗a +
1
c
gaγ γ a E⃗e) =

1
c2

∂

∂ t
(E⃗a − c gaγ γ a B⃗e) (9)

The definition of the equivalent axion charge ϱa and current J⃗a
ensities as

ϱa ≡ gaγ γ

√
ε0

µ0
∇ · (a B⃗e)

a⃗ ≡ −gaγ γ

√
ε0

µ0

(
∂ (a B⃗e)

∂ t
+ ∇ × (a E⃗e)

)
(10)

allows to rewrite the axion Maxwell’s Eqs. (9) in the conventional
form,

∇ · E⃗a =
ϱa

ε0

∇ · B⃗a = 0

∇ × E⃗a = −
∂ B⃗a

∂ t

× B⃗a =
1
c2

∂ E⃗a
∂ t

+ µ0 J⃗a . (11)

Note that both set of charge and current densities satisfy the
time-domain continuity equations:

∇ · J⃗e +
∂ ϱe

∂ t
= 0 ; ∇ · J⃗a +

∂ ϱa

∂ t
= 0 . (12)

Axion haloscopes are searching electromagnetic energy gen-
rated by the axion field within a microwave resonator in the
resence of an external electric E⃗e and/or magnetic B⃗e fields. In
ypical applications, only a very intense static magnetic field is
pplied, and the external electric field is zero E⃗e = 0⃗. Thus, the
ield B⃗e satisfies the classical Magnetostatic Maxwell’s Eqs. (8),

∇ · B⃗e = 0
× B⃗e = µ0 J⃗e

here J⃗e is the static external current density that creates the
agnetostatic field B⃗e. As a consequence, the axion current den-
ity defined in (10) becomes

a⃗ ≡ −gaγ γ

√
ε0

µ0

∂ (a B⃗e)
∂ t

= −gaγ γ

√
ε0

µ0
B⃗e

∂ a
∂ t

(13)

On the other hand, we will assume that the axion field is
escribed by the axion electrodynamics equation (22) of the
ef. [2] which is expressed in natural units as

∂2a
∂t2

− ∇
2a + m2

a a = −gaγ γ E⃗ · B⃗. (14)

herema is the axion mass. By inserting the first-order expansion
roposed in the subsection 2.2 of [16] for the electric E⃗ ≈ E⃗ +
e

5

gaγ γ E⃗1 and the magnetic B⃗ ≈ B⃗e + gaγ γ B⃗1 fields in (14) and
eglecting the terms (gaγ γ )2 and higher-order terms, it is very
asy to demonstrate the following result

∂2a
∂t2

− ∇
2a + m2

a a = −gaγ γ (gaγ γ E⃗1) · (B⃗e + B⃗a)

= −(gaγ γ )2 E⃗1 · (B⃗e + B⃗a) ≈ 0

hich can be expressed in Fourier domain resulting as

∇
2
+ ω2

− m2
a) a = 0.

he dispersion relationship used by Sikivie [2] is ω2
= m2

a + k2

here k is the magnitude of the axion wavenumber vector k⃗.
inally we obtain:

∇
2
+ k2) a = 0.

he complex phasor solution of this scalar Helmholtz wave equa-
ion can be expressed in terms of a plane wave,

(r⃗) = a0 e−j(k⃗·r⃗−ϕ) (15)

here a0 is the amplitude of the axion field and ϕ is the ini-
ial phase. Thus, the real axion field can be easily calculated as
ollows,

(r⃗, t) = Re(a ejωt ) = Re(a0 ej(ωt−k⃗·r⃗+ϕ)) = a0 cos(ωt − k⃗ · r⃗ +ϕ)

At this point, the BI-RME 3D formalism can be used for the
tudy of dark matter axions search haloscopes based on the
oncept of a microwave cavity with access waveguide ports. We
ill assume that the axion charge and current densities (10) are
resent in a lossy cavity. Then, Eq. (1) holds for such axion charge
nd current densities, so the BI-RME 3D can directly be applied.
ollowing Section 2, the source currents defined in (6) become as

˜(µ)
l ≡ −

M∑
m=1

F (µ)
ml

km
k2m − k2

∫
V
E⃗m(r⃗ ′) · J⃗a(r⃗ ′) dV ′ (16)

here J⃗a is the Fourier transform of the time-domain axion cur-
rent density J⃗a. Next, we are going to apply the presented the-
ory to the analysis of realistic haloscopes based on microwave
resonators.

4. Applications of the BI-RME 3D formalism to microwave
haloscopes

In this section the BI-RME 3D formalism is applied to resonant
microwave haloscopes, and two practical examples are analyzed.

4.1. BI-RME 3D formalism for resonant microwave haloscopes

Next, we have to express the axion current density given in
(13) in frequency-domain, obtaining

J⃗a(r⃗) = −gaγ γ

√
ε0

µ0
B⃗e(r⃗) jω a(r⃗)

= −gaγ γ

√
ε0

µ0
B⃗e(r⃗) jω a0 ej(−k⃗·r⃗+ϕ) (17)

In order to simplify the implementation of the method, let us
onsider that we only have one port P = 1 with one excited
waveguide mode N1 = 1. Thus, Eq. (7) becomes

I (1)1 = Y (1,1)
11 V (1)

n − Ĩ (1)1 . (18)

Now we will alleviate the notation by defining the following
terms: the current extracted from the cavity Iw ≡ I (1)1 , the cavity
input admittance Y ≡ Y (1,1), the voltage in the cavity V ≡ V (1),
c 11 c 1
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Fig. 3. Single mode equivalent network of a cavity resonator excited by an axion
ield with one port.

he current flowing on the cavity Ic ≡ Yc Vc , and the current
ource generated by the axion–photon coupling Ia ≡ Ĩ (1)1 . This
ast current (Ia) is the unique generator in the network, so we
an rewrite (18) as

w = Yc Vc − Ia = Ic − Ia (19)

here we want to remark the definition of the axion current
a using Eq. (16) and we have included the effect of the Ohmic
osses:

a ≡ Ĩ (1)1 ≡ −

M∑
m=1

F (1)
m1

κm

κ2
m − k2

∫
V
E⃗m(r⃗ ′) · J⃗a(r⃗ ′) dV ′

=

=

M∑
m=1

κm

k2 − κ2
m

(∫
S(1)

H⃗m(r⃗) · h⃗(1)
1 (r⃗) dS

)
  

COUPLING:CAV−PORT

×

(∫
V
E⃗m(r⃗ ′) · J⃗a(r⃗ ′) dV ′

)
  

COUPLING:AXION−CAV

(20)

his axion current is very important, since it represents the
xcitation of the cavity by the axion, and it relates both the
xion–cavity coupling and the cavity–external port coupling. In
ig. 3 the single-mode equivalent network of the BI-RME 3D
odel based on (19) is presented: the axion current Ia generated
y the axion field (which acts as the current source) is divided
nto two branches, the current Ic flowing along the cavity input
dmittance Yc , and the current −Iw , flowing towards the external
aveguide port, which is characterized by the modal impedance
f the fundamental mode Zw . Thus, we have demonstrated with a

full-wave modal technique that the energy created by the axion
within the cavity is split in two parts: the energy consumed by
the cavity (Ohmic losses), and the energy extracted from the
resonator towards the access waveguide port, which is the RF
signal that we will be able to detect in an experimental test-bed.

In this scenario we provide the expression of the cavity input
admittance as a function of the reflection scattering parameter
S11 of the lossy cavity as [30]

Yc = Yw

(
1 − S11
1 + S11

)
= Gc + j Xc (21)

here Yw = 1/Zw is the modal admittance of the fundamental
aveguide mode of the port, and Gc and Xc are the real part and
he imaginary part of Yc , respectively.

Next, by applying the classical Network Theory we are able to
alculate three time-average power terms: the power generated
6

by the axion Pa, the power dissipated by the cavity Pc , and the
power delivered to the external access waveguide port Pw as

Vc =
Ia

Yw + Yc
=

Ic
Yc

=
−Iw
Yw

⇒

⎧⎨⎩ Pc =
1
2Re(Vc I∗c ) =

|Ia|2

2|Yw + Yc |2
Re(Y ∗

c )

Pw =
1
2 Re(Vc (−Iw)∗) =

|Ia|2

2|Yw + Yc |2
Re(Y ∗

w)

here the symbol ∗ denotes conjugate complex.
Obviously, the Principle of Energy Conservation is satisfied:

Pa = Pc +Pw with Pa = (1/2)Re(Vc I∗a ) = (1/2)|Ia|2Re(1/(Yc +Yw)).
t this point we want to emphasize that the cavity voltage Vc
s able to provide information of the measured RF signal phase,
hich is an important contribution of the BI-RME 3D formulation

n comparison with other theories which are able to simulate
nly the detected power. It is very important to remark that in
he present formulation we do not need to use any theoretical
ssumptions or approximations for the frequency spectrum de-
endency of the extracted power Pw , as the Cauchy-Lorentz [16]
r Cauchy [35] distributions, used in previous contributions. What
s more, the result is accurate even at frequencies far from the
esonance peak.

It is worth noting that the presented theory can be applied
o the calculation of the loaded quality factor of the m resonant
mode QLm = ωmUm/(Pwm + Pcm ), where Pwm is the extracted
ower from the cavity to the access waveguide ports. Thus, the
xternal quality factor of them resonant mode is defined as Qem =

m Um/Pwm . Therefore, the relationship among the three quality
actors is Q−1

Lm = Q−1
em + Q−1

m .
Now we define the cavity-waveguide coupling factor of the m

esonant mode βm as the ratio between the unloaded and external
uality factors, resulting

m ≡
Qm

Qem
=

Pwm

Pcm
=

1
2

|Ia|2

|Yw + Yc |2
Re(Y ∗

w)

1
2

|Ia|2

|Yw + Yc |2
Re(Y ∗

c )
=

Re(Y ∗
w)

Re(Y ∗
c )

=
Yw

Gc

where we have assumed that the modal admittance Yw is real (the
fundamental mode is propagative and Ohmic losses are neglected
in the waveguide ports).

Microwave haloscopes typically operate under the critical cou-
pling regime βm = 1, which means that the power dissipated in
the cavity (Ohmic losses) is equal to the power delivered to the
waveguide ports, so Pcm = Pwm or Yw = Gc . By inserting this result
in (21) it is very easy to demonstrate that the reflection coefficient
of the cavity has to be zero (S11 = 0) under critical coupling
regime, as it is well known. Furthermore, the overcoupled regime
occurs when βm > 1 which implies that Yw > Gc , and in the
undercoupled regime βm < 1 so Yw < Gc .

4.2. Applications to microwave haloscopes with one coaxial waveg-
uide port

Now we are going to apply the present theory to cavities
which have one coaxial access port. Such coaxial transmission line
is characterized by the inner b and the outer a radii as well as the
relative electrical permittivity of the dielectric medium between
conductors εr . The normalized electric and magnetic vector mode
functions of the fundamental TEM mode are given in cylindrical
coordinates by [27]

eTEM =
1

√
2π ln(a/b)

1
r
r̂ ; h⃗TEM =

1
√
2π ln(a/b)

1
r

ϕ̂

here the orthonormalization relationship used is

e⃗TEM · (h⃗TEM × ẑ) dS = 1 .

S
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he modal impedance of the TEM coaxial mode is Zw = 1/Yw =

µ0/(ε0εr ), which should not be confused with the characteristic
coaxial impedance Z0 = Zw ln(a/b)/(2π ).

In the analyzed cases, we will suppose that the Compton
wavelength of the axions is high in comparison with the halo-
scope size, so the spatial dependence of the axion field can be
neglected. As a consequence, Eq. (15) becomes a = a0 ejϕ and
17) results in

⃗a(r⃗) = −gaγ γ

√
ε0

µ0
B⃗e(r⃗) jω a0 ejϕ .

Finally, this result must be inserted in (20) to obtain the axion
current used in the simulations:

Ia =
1
µ0

gaγ γ a0 ejϕ j k
M∑

m=1

κm

κ2
m − k2

×

(∫
S(1)

H⃗m(r⃗) · h⃗TEM (r⃗) dS
) (∫

V
E⃗m(r⃗) · B⃗e(r⃗) dV

)
(22)

with B⃗e ≡ B⃗e and h⃗TEM ≡ h⃗(1)
1 . It is worth to note that the second

integral is directly related with the geometric form factor Cm [16],
which is defined in this scenario as

Cm ≡

⏐⏐⏐∫V E⃗m(r⃗) · B⃗e(r⃗) dV
⏐⏐⏐2∫

V ∥B⃗e(r⃗)∥2 dV
(23)

here simple bars | · | indicate the magnitude of the complex
number, and double bars ∥ · ∥ are the vector norm defined on
the 3D complex vector space.

From an experimental point of view it is important to com-
ment that the voltage measured in the coaxial waveguide port
can be easily calculated as a function of the cavity voltage Vc by
integrating the electric field along the path from the inner to the
outer radii,

Vmeasa − Vmeasb = −

∫ a

b
Vc e⃗TEM · dr⃗ ⇒ Vmeas

≡ Vmeasb = Vc

√
ln(a/b)
2π

where we have assumed that the external conductor is the refer-
ence potential (Vmeasa = 0 V). Thus, Vmeas is the phasor (amplitude
and phase) of the time-harmonic RF signal detected in the coaxial
port.

Numerical simulations of this section have been computed
with the commercial software CST STUDIO SUITE [36] and the
postprocessing part has been developed with the commercial
software MATLAB [37].

4.2.1. Study of a cylindrical resonator cavity for benchmarking
In order to compare this theory with the technical literature,

we have benchmarked our algorithm with the example showed in
Figure 4 of [16]. A cylindrical cavity with a diameter d = 90 mm
and a length l = 1 m has been used, as displayed in Fig. 4. The
electrical conductivity of the metallic walls is σ = 6 · 107 S/m. A
coaxial cable with characteristic impedance of Z0 = 50
rmOmega (b = 0.635 mm, a = 2.11 mm, εr = 2.08) has been
nserted in the center of the top cap. The coaxial probe has been
esigned under critical coupling operation regime for the TM010
ode (f1 ≈ 2.55 GHz). The axion field and the axion–photon

nteraction model is described by the parameters gaγ γ a0 =

8.51 · 10−22 [16]. We have assumed an external homogeneous
agnetostatic field oriented along the cylinder axis: B⃗e = Be ẑ
ith Be = 8 T. The phase of the axion field used in the simulations

s zero: ϕ = 0 rad. With these conditions, the axion current given
 a

7

Fig. 4. Scheme of the cylindrical cavity.

Table 1
Parameters of the cylindrical cavity.
m Mode fm (GHz) Qm Cm

1 TM010 2.55920 33069.1 0.68505
2 TM011 2.56334 33260.6 0.00523
3 TM012 2.57646 33119.7 0.00027
4 TM013 2.59817 33292.4 5.305 · 10−5

5 TM014 2.62827 33493.8 1.710 · 10−5

6 TM015 2.66646 33781.9 7.247 · 10−6

in (22) becomes

Ia =
1
µ0

gaγ γ a0 Be j k
M∑

m=1

κm

κ2
m − k2

×

(∫
S(1)

H⃗m(r⃗) · h⃗TEM (r⃗) dS
) (∫

V
E⃗m(r⃗) · ẑ dV

)
(24)

In Fig. 5 both magnitude and phase of the reflection scattering
oefficient S11 of the cylindrical cavity obtained with CST Studio
are plotted. We can observe the resonances of the modes excited
by the coaxial probe. In Table 1 the most relevant parameters
of the structure for these set of modes are shown: resonant
frequencies fm, unlodaded quality factors Qm and geometric form
actors Cm as defined in (23). We can see that the geometric form
actor of the first mode is significantly higher than the others; in
articular, the factor of the last three modes is negligible.
Next, the input admittance of the cavity Yc computed with

q. (21) is presented in Fig. 6. Both the real Gc and the imaginary
c parts are plotted as a function of frequency. We want to point
ut that the real part is always positive because it represents
passive resistive behavior, and the imaginary part is zero at

he resonant frequencies, according with the classical Network
heory. Moreover, the positive sign of the imaginary part denotes
capacitive behavior, whereas if the sign is negative it represents
n inductive one.
In order to compare our technique with [16], we have com-

uted the axion current with Eq. (24) including only the first
esonant mode (M = 1). In Fig. 7 we plot Ia in both magnitude
nd phase as a function of frequency, showing the peak of the
esonant mode TM010 according to Table 1. In Fig. 8 the delivered
ower to the coaxial port (Pw) computed with both methods
s compared, demonstrating a good agreement not only in the
esonant frequency but also in a wide frequency range, which
llows to validate the presented procedure.
Next, we have computed the electrical response including the

ull set of modes coupled with the coaxial monopole (M = 6)
n the analyzed frequency range, as reported in Table 1. In Fig. 9
he axion current (24) is depicted, observing the contribution of
ach resonant mode to the equivalent axion current source. It is
vident that the greater the modal geometric form factor (23),
he higher the axion current is. Both, the power delivered to the
oaxial port Pw as well as the power dissipated in the cavity Pc
re showed in Fig. 10. In this plot we have also included the



P. Navarro, B. Gimeno, A.Á. Melcón et al. Physics of the Dark Universe 36 (2022) 101001

c

s
r
s
c
s
i
t
c
s
t
r
t
p
p

4
t

t
t
t
T
r
b
g
c
f

o
F
t
w
(
m
i
f
t
t

Fig. 5. Reflection scattering parameter S11 as a function of the frequency for the
ylindrical resonator. Magnitude (top) and phase (bottom) have been plotted.

imulations presented in [16]. In order to provide an accurate
esult, it is remarkable that we have to consider the complete
et of excited modes in the analyzed frequency range, which pre-
isely represents the global modal spectrum of the cavity. In this
ense, our simulation is more precise than the method presented
n [16] because it is able to account for the contribution of all
he resonant modes excited within the resonator. Therefore, we
an state that the BI-RME 3D is a wide-band numerical technique,
ince it allows to obtain the frequency response of the system in
he explored frequency range. Finally, we observe the frequency
esponse of the dissipated power in the cavity, demonstrating
hat at the resonant peak of the fundamental mode TM010 the
ower lost in the cavity is equal to the extracted power, as
redicted in the critical coupling regime.

.2.2. Study of the first RADES all-inductive coupled cavities struc-
ure

Finally, we have applied the present formulation to analyze
he first all-inductive coupled five cavities haloscope designed by
he RADES collaboration [10], which was successfully measured at
he CERN Axion Solar Telescope (CAST) facility [38] (see Fig. 11).
he operation mode of each cavity is the fundamental TE101
ectangular mode. The geometrical parameters of the filter can
e found in [10]. We have performed the simulations at cryo-
enic temperature (2 K) using this estimation for the electrical
onductivity: σ = 2 · 109 S/m. The resonant frequency used
or axion detection is f ≈ 8.4 GHz. Again, a coaxial cable with
1

8

Fig. 6. Input admittance of the cavity Yc as a function of the frequency for the
cylindrical resonator. Real part (top) and imaginary part (bottom) are shown.

characteristic impedance of Z0 = 50
rmOmega (b = 0.635 mm, a = 2.11 mm, εr = 2.08) has
been inserted in the first cavity operating in critical coupling
regime. The axion field and the axion–photon interaction model
is described by the parameters gaγ γ a0 = −8.51 · 10−22 [16]. The
phase of the axion field used in the simulations is zero: ϕ = 0 rad.
The external homogeneous static magnetic field used in the CAST
experiment is oriented along the vertical direction: B⃗e = Be ŷwith
Be = 8.8 T. Thus, the axion current given in (22) becomes

Ia =
1
µ0

gaγ γ a0 Be j k
M∑

m=1

κm

κ2
m − k2

×

(∫
S(1)

H⃗m(r⃗) · h⃗TEM (r⃗) dS
) (∫

V
E⃗m(r⃗) · ŷ dV

)
(25)

In Table 2 we have summarized the most relevant parameters
f the haloscope, including the electric field pattern presented in
igure 2 of [10]. In Fig. 12 we first plot the electrical response of
he structure, observing the peaks of the five resonances. Second,
e show in Fig. 13 the magnitude and phase of the axion current
25), including the first M = 5 resonant modes, which is maxi-
um for the first resonance. The amplitude of the axion current

s extremely low in the fourth resonance because the geometric
orm factor is negligible. Finally, in Fig. 14 we have displayed both
he extracted (Pw) and dissipated (Pc) powers, demonstrating
hat the critical coupling regime is not only satisfied at the first
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Fig. 7. Axion current Ia of the cylindrical cavity as a function of the frequency
considering only the first mode (M = 1). Magnitude (top) and phase (bottom)
are plotted.

Table 2
Parameters of the RADES haloscope.
m Electric field pattern fm (GHz) Qm Cm

1 + + + + + 8.428 40386 0.65
2 + + 0 − − 8.454 42033 3.2 · 10−7

3 − + + + − 8.528 43654 8.1 · 10−5

4 − + 0 − + 8.625 45882 1.6 · 10−12

5 − + − + − 8.710 48048 6.4 · 10−6

resonant peak (as designed) but also around the other resonances
(see details for the first resonance in the zoom of Fig. 14).

5. Conclusions

In this paper, the well-known BI-RME 3D full-wave technique
as been successfully adapted to the study of microwave halo-
copes based on resonant cavities. The formulation has been
erived from time-domain Maxwell’s equations to account for the
xion–photon interaction, and it considers the cavity wall losses
f the resonating structure by means of the standard perturbation
ethod. Then, classical Network Theory has been used to obtain

he expressions for the current and voltage induced by the axion.
Following this technique, an exact frequency-domain expres-

ion for the current produced by the axion–photon coupling
echanism has been accurately obtained in complex form (mag-
itude and phase) for the first time, avoiding Cauchy-Lorentz
9

Fig. 8. Extracted power Pw from the cylindrical cavity (continuous line) as a
function of the frequency considering only the first mode (M = 1) in comparison
with [16] (dashed line) (top). We also show a zoom in the bottom figure for a
closer comparison.

approximations. The conditions for the electromagnetic analy-
sis include microwave haloscopes based on resonant cavities of
arbitrary geometries and number of access waveguide ports. A
multimodal response for each port is obtained, i.e., if higher order
modes are excited at the waveguide ports its response can be ob-
tained for each higher order mode. In the present formulation the
axion field is distributed within the whole cavity and the inter-
action is produced throughout all the volume. Since this method
is able to calculate the coupling of the axion with each resonant
mode, it allows to calculate the electromagnetic field pattern
generated by the axion inside the cavity as a superposition of the
different excited modes.

The derived general expression for the equivalent axion cur-
rent takes into account the axion source interaction with both
cavity and extracting probes. It shows how the electromagnetic
energy generated by the axion–photon coupling is split into two
terms: the extracted power (delivered to the ports) and the dissi-
pated power (Ohmic losses). To the authors knowledge, available
commercial full-wave electromagnetic simulators cannot deal
nowadays with this axion–photon interaction problem.

In order to verify the proposed technique an accurate compari-
son with previous bibliography data has been carried out showing
a good agreement nearby the main resonance peak. Additionally,
precise results in a wide-band region around the working fre-
quency have also been provided. This has allowed highlight the
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Fig. 9. Axion current Ia of the cylindrical cavity as a function of the frequency,
considering the total set of modes coupled with the coaxial probe (M = 6).
Magnitude (top) and phase (bottom) are displayed.

importance of higher order modes, showing that care must be
taken since the whole experiment reliability can be affected by
neighboring resonant modes. Depending on the nearness to the
axion resonance and the form factor, the axion can be coupled
to more than one mode. A well-designed experiment will try to
separate enough the main mode from neighboring modes in order
to consider the modal overlapping negligible.

Future research lines may include the consideration of di-
electric and/or magnetic materials in the analysis. Also, multi-
port configurations may be interesting when coherently com-
bining the received signal in different coupled cavities for post-
processing purposes, since the phase response of the photon–
axion conversion is obtained. This last is a key feature of this
technique: a complete information of the extracted signal (mag-
nitude and phase) in a broad range of frequencies is obtained.
This allows not only to calculate the extracted RF power, but also
to study the phase of the axion field. One particularly promis-
ing possibility that can be explored consists in the analytical
study of setups consisting on several cavities, placed at a dis-
tance for which the spatial gradient of the axion field might
be non-negligible; opening a new door to directional sensitive
experiments like the ones proposed in [39] . In summary, it must
be pointed out that the developed method can be accurately used
for broad-band design purposes, when working with haloscopes
based on resonant microwave cavities.
10
Fig. 10. Extracted Pw and dissipated Pc powers of the cylindrical cavity as a
function of the frequency, considering the full set of modes coupled with the
coaxial probe (M = 6) in comparison with [32] (top). In the bottom figure,
we present a zoom of the plot in order to check the coupling regime achieved
in the design of the coaxial probe, observing a very accurate critical coupling
condition.

Fig. 11. Scheme of the five cavities coupled all-inductive RADES haloscope. The
coaxial cable has been inserted in the first cavity.
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Fig. 12. Reflection scattering parameter S11 as a function of the frequency for
he RADES haloscope. Magnitude (top) and phase (bottom) are shown.
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ppendix

In this Appendix the most important properties of the Green’s
unctions used in this work are summarized.

.1. Expansion of the electromagnetic field in a microwave cavity

The electromagnetic energy stored in the volume V of a cavity
s finite, so the electric and magnetic fields of the cavity belong
o the complex Hilbert space of square integrable functions L2(V ).
ollowing the Helmholtz’s theorem [33], the electromagnetic field
xisting within a cavity can be expanded at an infinite number
11
Fig. 13. Axion current Ia as a function of the frequency for the RADES haloscope,
s obtained with the method presented in this paper. Magnitude (top) and phase
bottom) have been plotted.

f both solenoidal and irrotational modes [25,29,33,34,40]. For
closed cavity we only need the solenoidal ones, but a cavity

s usually coupled to the outside sources by means of a small
perture (access waveguide port) or a probe or loop connected
o a coaxial transmission line, which also requires the inclusion
f the irrotational modes.

.1.1. Expansion of the electric field
Taken this starting point, the expansion of the electric field

igenvectors is expressed in terms of solenoidal and irrotational
odes:
(a) Solenoidal modes: These modes satisfy the following dif-

erential equations:
2E⃗i + k2i E⃗i = 0⃗ in V

∇ · E⃗i = 0 ; ∇ × E⃗i ̸= 0⃗ in V
n⃗ × E⃗i = 0⃗ on SV

where SV is the surface of the cavity, and k2i and E⃗i are the
solenoidal electric eigenvalues and eigenvectors, respectively.
These set of modes correspond to the physical resonances.

(b) Irrotational modes: These modes satisfy the following dif-
ferential equations:

∇
2 f⃗i + µ2

i f⃗i = 0⃗ in V (26)

∇ × f⃗ = 0⃗ ; ∇ · f⃗ ̸= 0 in V (27)
i i
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Fig. 14. Extracted Pw and dissipated Pc powers as a function of the frequency for
he RADES haloscope (top). In the bottom figure we present a zoom of the plot
n order to check the coupling regime achieved in the design of the coaxial probe
t the main resonance, observing a very accurate critical coupling condition.

n⃗ × f⃗i = 0⃗ on SV
µi f⃗i = ∇vi (28)

2vi + µ2
i vi = 0 in V (29)

vi = 0 on SV (Dirichlet boundary condition) (30)

here µ2
i and f⃗i are the irrotational electric eigenvalues and

igenvectors, respectively. The scalar eigenfunctions vi are used
o obtain the corresponding eigenvectors.

.1.2. Expansion of the magnetic field
The expansion of the magnetic field eigenvectors is also ex-

ressed in terms of solenoidal and irrotational modes:
(a) Solenoidal modes: These modes satisfy the following dif-

erential equations:
2H⃗i + k2i H⃗i = 0⃗ in V

∇ · H⃗i = 0 ; ∇ × H⃗i ̸= 0⃗ in V
n⃗ · H⃗i = 0 on SV

here k2i and H⃗i are the solenoidal magnetic eigenvalues and
igenvectors, respectively. These set of modes correspond to the
hysical resonances, and are related with the solenoidal electric
odes as follows:

× E⃗ = k H⃗ , ∇ × H⃗ = k E⃗
i i i i i i

12
b) Irrotational modes: These modes satisfy the following differ-
ntial equations:

∇
2g⃗i + ν2

i g⃗i = 0⃗ in V

∇ × g⃗i = 0⃗ ; ∇ · g⃗i ̸= 0 in V
n⃗ · g⃗i = 0 on SV
νi g⃗i = ∇wi (31)

2wi + ν2
i wi = 0 in V (32)

∂ wi

∂ n
= 0 on SV (Neumann boundary condition) (33)

here ν2
i and g⃗i are the irrotational magnetic eigenvalues and

igenvectors, respectively. The scalar eigenfunctions wi are used
o obtain the corresponding eigenvectors.

.1.3. Orthonormalization properties and modal expansion
The previous modes satisfy these orthonormalization relation-

hips:∫
V
E⃗i · E⃗j dV = δi,j ;

∫
V
f⃗i · f⃗j dV = δi,j ;

∫
V
E⃗i · f⃗j dV = 0

V
H⃗i · H⃗j dV = δi,j ;

∫
V
g⃗i · g⃗j dV = δi,j ;

∫
V
H⃗i · g⃗j dV = 0 .

here δi,j is the Kronecker delta. These properties allow to obtain
he modal expansion coefficients as

Ei =

∫
V
E⃗ · E⃗i dV ; Fi =

∫
V
E⃗ · f⃗i dV

i =

∫
V
H⃗ · H⃗i dV ; Gi =

∫
V
H⃗ · g⃗i dV .

inally we can develop the modal expansion for the electromag-
etic field within the resonator, as

E⃗ =

∑
i

EiE⃗i +
∑

i

Fi f⃗i

⃗ =

∑
i

HiH⃗i +
∑

i

Gig⃗i .

.2. Potential Green’s functions

BI-RME 3D formalism is based on the use of the electric
nd magnetic scalar and dyadic potentials under the Coulomb
auge defined on a cavity [24,25]. We want to emphasize that
oth electric scalar ge and dyadic G⃗A potentials are related with
he real electric charge and currents densities existing on the
onducting walls of the cavity. However, the magnetic scalar gm

nd dyadic G⃗F potentials represent fictitious magnetic charge and
urrent densities that allow to introduce in the formulation the
xistence of the access waveguide ports on the surface cavity.
hese fictitious magnetic charges and currents are used to impose
he correct boundary conditions for the tangential components of
he electromagnetic fields across the port interfaces. We want to
emark that fictitious magnetic charges and currents have been
ypically used in Classical Electromagnetic Theory in waveguides,
avities and antennas problems [41], where they are not related
ith magnetic monopoles [32].

.2.1. Electric potential Green’s s functions
The electric scalar static potential ge satisfies

2ge(r⃗, r⃗ ′) = −δ(r⃗ − r⃗ ′) in V
e

⃗ ′⃗
g (r, r ) = 0 on SV
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hose solution under the Coulomb gauge is

e(r⃗, r⃗ ′) =

+∞∑
i=1

1
µ2

i
vi(r⃗)vi(r⃗ ′) .

his scalar Green’s function can be split into a singular ge
s and a

egular ge
r parts as follows:

ge(r⃗, r⃗ ′) = ge
s (r⃗, r⃗ ′) + ge

r (r⃗, r⃗ ′)

ge
s (r⃗, r⃗ ′) =

1
4πR

here we have included the explicit expression of the singular
art, which is the scalar potential Green’s function in free space
ecause the singularity does not depend on the boundary con-
itions; R is the magnitude of the relative vector R⃗ ≡ r⃗ − r⃗ ′,
≡ ∥R⃗∥.
The electric dyadic potential G⃗A satisfies

× ∇ × G⃗A(r⃗, r⃗ ′) − k2G⃗A(r⃗, r⃗ ′) = I⃗δ(r⃗ − r⃗ ′) − ∇ ∇
′gE(r⃗, r⃗ ′) in V

n⃗ × G⃗A = 0 on SV

hose solution under the Coulomb gauge is expressed as a mode
xpansion:

A⃗(r⃗, r⃗ ′) =

+∞∑
i=1

E⃗i(r⃗) E⃗i(r⃗ ′)
k2i − k2

.

The convergence of this eigenvector series can be accelerated by
extracting its zero-frequency limit because the singularity is inde-
pendent of the frequency. Thus, the electric dyadic potential can
be divided in two terms: the static part ⃗GA

0 which is singular and
oes not depend on the frequency, and the frequency dependent
erm G⃗A

r . In this scenario, it is possible to demonstrate that the
static part can be expressed as the summation of the singular
term and the regular static term ⃗GA

0r . Finally we obtain

A⃗(r⃗, r⃗ ′) =
⃗GA
0 (r⃗, r⃗ ′) + G⃗A

r (r⃗, r⃗ ′)

A⃗
0 (r⃗, r⃗ ′) =

1
8πR

(
I⃗ +

R⃗ R⃗
R2

)
+

⃗GA
0r (r⃗, r⃗

′)

A⃗
r (r⃗, r⃗ ′) = k2

+∞∑
i=1

E⃗i(r⃗) E⃗i(r⃗ ′)
k2i (k

2
i − k2)

The symbol I⃗ represents the unit dyadic.

A.2.2. Magnetic potential Green’s s functions
The magnetic potential Green’s functions are very similar to

the electric potential Green’s functions. We summarize the most
important equations, using duality on the previous equations:

∇
2gm(r⃗, r⃗ ′) = −δ(r⃗ − r⃗ ′) in V

∂gm

∂n
= 0 on SV

gm(r⃗, r⃗ ′) =

+∞∑
i=1

1
ν2
i

wi(r⃗)wi(r⃗ ′) = gm
s (r⃗, r⃗ ′) + gm

r (r⃗, r⃗ ′)

gm
s (r⃗, r⃗ ′) =

1
4πR

× ∇ × G⃗F(r⃗, r⃗ ′) − k2G⃗F(r⃗, r⃗ ′) = I⃗δ(r⃗ − r⃗ ′) − ∇ ∇
′gm(r⃗, r⃗ ′) in V

n⃗ × ∇ × G⃗F
= 0 on SV

G⃗F(r⃗, r⃗ ′) =

+∞∑ H⃗i(r⃗) H⃗i(r⃗ ′)
k2 − k2

=
⃗GF
0(r⃗, r⃗ ′) + G⃗F

r (r⃗, r⃗ ′)

i=1 i
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⃗GF
0(r⃗, r⃗ ′) =

1
8πR

(
I⃗ +

R⃗ R⃗
R2

)
+

⃗GF
0r (r⃗, r⃗

′)

G⃗F
r (r⃗, r⃗ ′) = k2

+∞∑
i=1

H⃗i(r⃗) H⃗i(r⃗ ′)
k2i (k

2
i − k2)

eferences

[1] P. Sikivie, Experimental tests of the invisible Axion, in: M.A. Srednicki
(Ed.), Phys. Rev. Lett. 51 (1983) 1415–1417, http://dx.doi.org/10.1103/
PhysRevLett.51.1415; Phys. Rev. Lett. 52 (1984) 695, Erratum.

[2] P. Sikivie, Invisible axion search methods, Rev. Mod. Phys. 93 (2021)
015004, http://dx.doi.org/10.1103/RevModPhys.93.015004.

[3] S.J. Asztalos, et al., ADMX Collaboration, Large scale microwave cavity
search for dark matter axions, Phys. Rev. D 64 (2001) 092003, http:
//dx.doi.org/10.1103/PhysRevD.64.092003.

[4] T. Braine, et al., ADMX Collaboration, Extended search for the invisible
axion with the axion dark matter experiment, Phys. Rev. Lett. 124 (10)
(2020) 101303, http://dx.doi.org/10.1103/PhysRevLett.124.101303, arXiv:
1910.08638.

[5] D. Alesini, D. Babusci, D. Di Gioacchino, C. Gatti, G. Lamanna, C. Ligi, The
KLASH proposal, 2017, arXiv:1707.06010.

[6] S. Al Kenany, et al., Design and operational experience of a microwave
cavity axion detector for the 20–100 µeV range, Nucl. Instrum. Methods
A 854 (2017) 11–24, http://dx.doi.org/10.1016/j.nima.2017.02.012, arXiv:
1611.07123.

[7] B.T. McAllister, G. Flower, E.N. Ivanov, M. Goryachev, J. Bourhill, M.E.
Tobar, The ORGAN experiment: An axion haloscope above 15 GHz, Phys.
Dark Univ. 18 (2017) 67–72, http://dx.doi.org/10.1016/j.dark.2017.09.010,
arXiv:1706.00209.

[8] D. Alesini, et al., Search for invisible axion dark matter of mass
ma = 43µeV with the QUAX–aγ experiment, Phys. Rev. D 103 (10)
(2021) 102004, http://dx.doi.org/10.1103/PhysRevD.103.102004, arXiv:
2012.09498.

[9] J. Jeong, S. Youn, S. Ahn, J.E. Kim, Y.K. Semertzidis, Concept of multiple-
cell cavity for axion dark matter search, Phys. Lett. B 777 (2018) 412–419,
http://dx.doi.org/10.1016/j.physletb.2017.12.066, arXiv:1710.06969.

[10] A.Á. Melcón, S. Arguedas-Cuendis, C. Cogollos, A. Díaz-Morcillo, B. Döbrich,
J.D. Gallego, B. Gimeno, I.G. Irastorza, A.J. LozanoGuerrero, C. Malbrunot,
P. Navarro, C. Pen̄a-Garay, J. Redondo, T. Vafeiadis, W. Wuensch, Axion
searches with microwave filters: the RADES project, J. Cosmol. Astropart.
Phys. 040 (2018) 1–22, http://dx.doi.org/10.1088/1475-7516/2018/05/040.

[11] A. Caldwell, G. Dvali, B. Majorovits, A. Millar, G. Raffelt, J. Redondo, O.
Reimann, F. Simon, F. Steffen, Dielectric haloscopes: A new way to detect
axion dark matter, Phys. Rev. Lett. 118 (9) (2017) 091801, http://dx.doi.
org/10.1103/PhysRevLett.118.091801, arXiv:1611.05865.

[12] I.G. Irastorza, J. Redondo, New experimental approaches in the search
for axion-like particles, Prog. Part. Nucl. Phys. 102 (2018) 89–159, http:
//dx.doi.org/10.1016/j.ppnp.2018.05.003, arXiv:1801.08127.

[13] H. Peng, et al., Cryogenic cavity detector for a large scale cold dark-
matter axion search, Nucl. Instrum. Methods A 444 (2000) 569–583, http:
//dx.doi.org/10.1016/S0168-9002(99)00971-7.

[14] O.K. Baker, M. Betz, F. Caspers, J. Jaeckel, A. Lindner, A. Ringwald, Y.
Semertzidis, P. Sikivie, K. Zioutas, Prospects for searching axion-like par-
ticle dark matter with dipole, toroidal and wiggler magnets, Phys. Rev.
D 85 (2012) 035018, http://dx.doi.org/10.1103/PhysRevD.85.035018, arXiv:
1110.2180.

[15] A.Á. Melcón, S. Arguedas-Cuendis, C. Cogollos, A. Díaz-Morcillo, B. Döbrich,
J.D. Gallego, J.M. García-Barceló, B. Gimeno, J. Golm, I.G. Irastorza, A.J.
Lozano-Guerrero, C. Malbrunot, A. Millar, P. Navarro, C. Pen̄a-Garay, J.
Redondo, W. Wuensch, Scalable haloscopes for axion dark matter detection
in the 30 microeV range with RADES, J. High Energy Phys. 084 (2020) 1–28,
http://dx.doi.org/10.1007/JHEP07(2020)084.

[16] Y. Kim, D. Kim, J. Jeong, J. Kim, Y.C. Shin, Y.K. Semertzidis, Effective
approximation of electromagnetism for axion haloscope searches, Phys.
Dark Univ. 26 (100362) (2019) 1–10, http://dx.doi.org/10.1016/j.dark.2019.
100362.

[17] P. Arcioni, M. Bressan, L. Perregrini, A new boundary integral approach
to the determination of resonant modes of arbitrarily shaped cavities,
IEEE Trans. Microw. Theory Tech. MTT-43 (8) (1995) 1848–1856, http:
//dx.doi.org/10.1109/22.402270.

[18] P. Arcioni, M. Bozzi, M. Bressan, G. Conciauro, L. Perregrini,
Frequency/time-domain modelling of 3D waveguide structures
by a BI-RME approach, Int. J. Numer. Model. 15 (2002) 3–21,
http://dx.doi.org/10.1002/jnm.429.

[19] F. Mira, M. Bressan, G. Conciauro, B. Gimeno, V. Boria, Fast S-domain
modeling of rectangular waveguides with radially symmetric metal insets,
IEEE Trans. Microw. Theory Tech. 53 (4) (2005) 1294–1303, http://dx.doi.
org/10.1109/TMTT.2005.845762.

http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb1
http://dx.doi.org/10.1103/RevModPhys.93.015004
http://dx.doi.org/10.1103/PhysRevD.64.092003
http://dx.doi.org/10.1103/PhysRevD.64.092003
http://dx.doi.org/10.1103/PhysRevD.64.092003
http://dx.doi.org/10.1103/PhysRevLett.124.101303
http://arxiv.org/abs/1910.08638
http://arxiv.org/abs/1910.08638
http://arxiv.org/abs/1910.08638
http://arxiv.org/abs/1707.06010
http://dx.doi.org/10.1016/j.nima.2017.02.012
http://arxiv.org/abs/1611.07123
http://arxiv.org/abs/1611.07123
http://arxiv.org/abs/1611.07123
http://dx.doi.org/10.1016/j.dark.2017.09.010
http://arxiv.org/abs/1706.00209
http://dx.doi.org/10.1103/PhysRevD.103.102004
http://arxiv.org/abs/2012.09498
http://arxiv.org/abs/2012.09498
http://arxiv.org/abs/2012.09498
http://dx.doi.org/10.1016/j.physletb.2017.12.066
http://arxiv.org/abs/1710.06969
http://dx.doi.org/10.1088/1475-7516/2018/05/040
http://dx.doi.org/10.1103/PhysRevLett.118.091801
http://dx.doi.org/10.1103/PhysRevLett.118.091801
http://dx.doi.org/10.1103/PhysRevLett.118.091801
http://arxiv.org/abs/1611.05865
http://dx.doi.org/10.1016/j.ppnp.2018.05.003
http://dx.doi.org/10.1016/j.ppnp.2018.05.003
http://dx.doi.org/10.1016/j.ppnp.2018.05.003
http://arxiv.org/abs/1801.08127
http://dx.doi.org/10.1016/S0168-9002(99)00971-7
http://dx.doi.org/10.1016/S0168-9002(99)00971-7
http://dx.doi.org/10.1016/S0168-9002(99)00971-7
http://dx.doi.org/10.1103/PhysRevD.85.035018
http://arxiv.org/abs/1110.2180
http://arxiv.org/abs/1110.2180
http://arxiv.org/abs/1110.2180
http://dx.doi.org/10.1007/JHEP07(2020)084
http://dx.doi.org/10.1016/j.dark.2019.100362
http://dx.doi.org/10.1016/j.dark.2019.100362
http://dx.doi.org/10.1016/j.dark.2019.100362
http://dx.doi.org/10.1109/22.402270
http://dx.doi.org/10.1109/22.402270
http://dx.doi.org/10.1109/22.402270
http://dx.doi.org/10.1002/jnm.429
http://dx.doi.org/10.1109/TMTT.2005.845762
http://dx.doi.org/10.1109/TMTT.2005.845762
http://dx.doi.org/10.1109/TMTT.2005.845762


P. Navarro, B. Gimeno, A.Á. Melcón et al. Physics of the Dark Universe 36 (2022) 101001
[20] Á.A.S. Blas, F. Mira, V.E. Boria, B. Gimeno, M. Bressan, P. Arcioni, On
the fast and rigorous analysis of compensated waveguide junctions
using off-centered partial-height metallic posts, IEEE Trans. Microw. Theory
Tech. 55 (1) (2007) 168–175, http://dx.doi.org/10.1109/TMTT.2006.886928.

[21] J. Gil, A.M. Pérez, B. Gimeno, M. Bressan, V. Boria, G. Conciauro, Analysis
of cylindrical dielectric resonators in rectangular cavities using a state-
space integral-equation method, IEEE Microw. Wirel. Compon. Lett. 16 (12)
(2006) 636–638, http://dx.doi.org/10.1109/LMWC.2006.885584.

[22] J. Gil, A.S. Blas, C. Vicente, B. Gimeno, M. Bressan, V. Boria, G. Conciauro,
M. Maestre, Full-wave analysis and design of dielectric-loaded waveguide
filters using a state-space integral-equation method, IEEE Trans. Microw.
Theory Tech. 57 (1) (2009) 109–120, http://dx.doi.org/10.1109/TMTT.2008.
2008974.

[23] M. Bressan, S. Battistutta, M. Bozzi, L. Perregrini, Modeling of inhomo-
geneous and lossy waveguide components by the segmentation technique
combined with the calculation of green’s function by Ewald’s method, IEEE
Trans. Microw. Theory Tech. 66 (2) (2018) 633–642, http://dx.doi.org/10.
1109/TMTT.2017.2787587.

[24] P. Arcioni, M. Bozzi, M. Bressan, G. Conciauro, L. Perregrini, The BI-RME
method: an historical overview, in: 2014 International Conference on
Numerical Electromagnetic Modeling and Optimization for RF, Microwave,
and Terahertz Applications, NEMO, 2014, http://dx.doi.org/10.1109/NEMO.
2014.6995653.

[25] G. Conciauro, M. Guglielimi, R. Sorrentino, Advanced modal analysis, in:
CAD Techniques for Waveguide Components and Filters, first ed., John
Wiley and Sons, Ltd, 2000.

[26] C.-T. Tai, Generalized vector and dyadic analysis, in: Applied Mathematics
in Field Theory, first ed., IEEE Press, 1991.

[27] N. Marcuvitz, Waveguide handbook, first ed., Peter Peregrinus Ltd, 1993.
[28] G.W. Hanson, A.B. Yakovlev, Operator Theory for Electromagnetics. An

Introduction, first ed., Springer-Verlag, 2002.
[29] R.E. Collin, Foundations for Microwave Engineering, second ed., McGraw-

Hill, Inc. 1992.
14
[30] D.M. Pozar, Microwave Engineering, fourth ed., John Wiley and Sons,
Inc. 2012.

[31] A. San-Blas, B. Gimeno, V. Boria, Study of the multipactor phenomenon
using a full-wave integral equation technique, Int. J. Electr. Commun. 79
(2017) 286–290, http://dx.doi.org/10.1016/j.aeue.2017.06.009.

[32] J.D. Jackson, Classical Electrodynamics, third ed., John Wiley and Sons,
Inc. 1999.

[33] R.E. Collin, Field Theory of Guided Waves, second ed., IEEE Press, 1991.
[34] K. Kurokawa, An introduction to the theory of microwave circuits, first ed.,

Academic Press, 1969.
[35] D. Kim, J. Jeong, S. Youn, Y. Kima, Y.K. Semertzidis, Revisiting the detection

rate for axion haloscopes, J. Cosmol. Astropart. Phys. 2020 (03) (2020)
1–14, http://dx.doi.org/10.1088/1475-7516/2020/03/066.

[36] CST Studio suite: electromagnetic field simulation software, https://www.
3ds.com/products-services/simulia/products/cst-studio-suite/.

[37] MATLAB, https://mathworks.com/products/matlab.html.
[38] A.Á. Melcón, S. Arguedas-Cuendis, J. Baier, K. Barth, H. Bräuninger, S.

Calatroni, G. Cantatore, F. Caspers, J. Castel, S. Cetin, C. Cogollos, T. Dafni,
M. Davenport, A. Dermenev, K. Desch, A. Díaz-Morcillo, B. Döbrich, H.
Fischer, W. Funk, J. Gallego, J. García-Barceló, A. Gardikiotis, J. Garza, B.
Gimeno, S. Gninenko, J. Golm, M.H.D. Hoffmann, I. Irastorza, K. Jakovcic,
J. Kaminski, M. Karuza, B. Lakic, J. Laurent, A. Lozano-Guerrero, G. Luzón,
C. Malbrunot, M. Maroudas, J. Miralda, H. Mirallas, L. Miceli, P. Navarro,
A. Ozbey, K. Ozbozduman, C. Pen̄a-Garay, M. Pivovaro, J. Redondo, J.
Ruz, E.R. Chóliz, S. Schmidt, M. Schumann, Y. Semertzidis, S. Solanki, L.
Stewart, I. Tsagris, T. Vafeiadis, J. Vogel, W. Wuensch, K. Zioutas, First
results of the cast-rades haloscope search for axions at 34.67 microev,
https://arxiv.org/abs/2104.13798.

[39] S. Knirck, A.J. Millar, C.A.J. O’Hare, J. Redondo, F.D. Steffen, Directional axion
detection, J. Cosmol. Astropart. Phys. 11 (2018) 051, http://dx.doi.org/10.
1088/1475-7516/2018/11/051.

[40] J.V. Bladel, Electromagnetic Fields, second ed., IEEE Press, 2007.
[41] R.F. Harrington, Time-Harmonic Electromagnetic Fields, first ed., IEEE Press,

2001.

http://dx.doi.org/10.1109/TMTT.2006.886928
http://dx.doi.org/10.1109/LMWC.2006.885584
http://dx.doi.org/10.1109/TMTT.2008.2008974
http://dx.doi.org/10.1109/TMTT.2008.2008974
http://dx.doi.org/10.1109/TMTT.2008.2008974
http://dx.doi.org/10.1109/TMTT.2017.2787587
http://dx.doi.org/10.1109/TMTT.2017.2787587
http://dx.doi.org/10.1109/TMTT.2017.2787587
http://dx.doi.org/10.1109/NEMO.2014.6995653
http://dx.doi.org/10.1109/NEMO.2014.6995653
http://dx.doi.org/10.1109/NEMO.2014.6995653
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb25
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb25
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb25
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb25
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb25
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb26
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb26
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb26
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb27
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb28
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb28
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb28
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb29
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb29
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb29
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb30
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb30
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb30
http://dx.doi.org/10.1016/j.aeue.2017.06.009
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb32
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb32
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb32
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb33
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb34
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb34
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb34
http://dx.doi.org/10.1088/1475-7516/2020/03/066
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
https://mathworks.com/products/matlab.html
https://arxiv.org/abs/2104.13798
http://dx.doi.org/10.1088/1475-7516/2018/11/051
http://dx.doi.org/10.1088/1475-7516/2018/11/051
http://dx.doi.org/10.1088/1475-7516/2018/11/051
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb40
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb41
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb41
http://refhub.elsevier.com/S2212-6864(22)00028-0/sb41

	Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators
	Introduction
	The BI-RME 3D method
	Lossless cavity
	Cavity with lossy walls

	Electromagnetic analysis of the interaction axion–photon
	Applications of the BI-RME 3D formalism to microwave haloscopes
	BI-RME 3D formalism for resonant microwave haloscopes
	Applications to microwave haloscopes with one coaxial waveguide port
	Study of a cylindrical resonator cavity for benchmarking
	Study of the first RADES all-inductive coupled cavities structure


	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix
	Expansion of the electromagnetic field in a microwave cavity
	Expansion of the electric field
	Expansion of the magnetic field
	Orthonormalization properties and modal expansion

	Potential Green's functions
	Electric potential Green's s functions
	Magnetic potential Green's s functions


	References


