121 research outputs found

    Creating vegetation density profiles for a diverse range of ecological habitats using terrestrial laser scanning

    Get PDF
    Vegetation structure is an important determinant of species habitats and diversity. It is often represented by simple metrics, such as canopy cover, height and leaf area index, which do not fully capture three-dimensional variations in density. Terrestrial laser scanning (TLS) is a technology that can better capture vegetation structure, but methods developed to process scans have been biased towards forestry applications. The aim of this study was to develop a methodology for processing TLS data to produce vegetation density profiles across a broader range of habitats. We performed low-resolution and medium-resolution TLS scans using a Leica C5 Scanstation at four locations within eight sites near Wollongong, NSW, Australia (34·38-34·41°S, 150·84-150·91°E). The raw point clouds were converted to density profiles using a method that corrected for uneven ground surfaces, varying point density due to beam divergence and occlusion, the non-vertical nature of most beams and for beams that passed through gaps in the vegetation without generating a point. Density profiles were evaluated against visual estimates from three independent observers using coarse height classes (e.g. 5-10 m). TLS produced density profiles that captured the three-dimensional vegetation structure. Although sites were selected to differ in structure, each was relatively homogeneous, yet we still found a high spatial variation in density profiles. There was also large variation between observers, with the RMS error of the three observers relative to the TLS varying from 16·2% to 32·1%. Part of this error appeared to be due to misjudging the height of vegetation, which caused an overestimation in one height class and an underestimation in another. Our method for generating density profiles using TLS can capture three-dimensional vegetation structure in a manner that is more detailed and less subjective than traditional methods. The method can be applied to a broad range of habitats - not just forests with open understoreys. However, it cannot accurately estimate near-surface vegetation density when there are uneven surfaces or dense vegetation prevents sufficient ground returns. Nonetheless, TLS density profiles will be an important input for research on species habitats, microclimates and nutrient cycles

    AugerPrime implementation in the DAQ systems of the Pierre Auger Observatory

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data

    Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory

    Get PDF
    The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gamma rays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented
    corecore