477 research outputs found

    Connectivity for the frisbee architecture

    Get PDF
    In this paper we investigate the kconnectivity threshold of distributed dense ad hoc heterogeneous wireless sensor network architecture. We consider the situation when sensors are deployed in the surveillance area according to a uniform distribution perturbed by a Gaussian noise. We derive analytically the minimum detection range which guarantees an emerging structure in the network, namely the connectivity, which becomes larger and larger as the number of sensors in the network increase. This allows the target track to be propagated almost surely throughout the network using the minimum possible amount ofprime energy. We report the results of some simulation experiments which further support the theoretical results

    Algorithms for the selection of the active sensors in distributed tracking: Comparison between Frisbee and GNS methods

    Get PDF
    This paper compares two different approaches for sensor selection for distributed tracking: 1) The Frisbee method, and 2) Global Node Selection (GNS). The Frisbee method is based on the proximity of the nodes to the predicted location of the target; GNS is based on minimizing the unbiased Cramer Rao lower bound (CRLB). Both theoretical and experimental results indicate that the Frisbee method is as effective as GNS. Furthermore, the Frisbee method is attractive due to its very light computational load

    Cognitive Function and Atrial Fibrillation: From the Strength of Relationship to the Dark Side of Prevention. Is There a Contribution from Sinus Rhythm Restoration and Maintenance?

    Get PDF
    Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia with an increasing prevalence over time mainly because of population aging. It is well established that the presence of AF increases the risk of stroke, heart failure, sudden death, and cardiovascular morbidity. In the last two decades several reports have shown an association between AF and cognitive function, ranging from impairment to dementia. Ischemic stroke linked to AF is a well-known risk factor and predictor of cognitive decline. In this clinical scenario, the risk of stroke might be reduced by oral anticoagulation. However, recent data suggest that AF may be a predictor of cognitive impairment and dementia also in the absence of stroke. Cerebral hypoperfusion, reduced brain volume, microbleeds, white matter hyperintensity, neuroinflammation, and genetic factors have been considered as potential mechanisms involved in the pathogenesis of AF-related cognitive dysfunction. However, a cause-effect relationship remains still controversial. Consequently, no therapeutic strategies are available to prevent AF-related cognitive decline in stroke-free patients. This review will analyze the potential mechanisms leading to cognitive dysfunction in AF patients and examine the available data on the impact of a sinus rhythm restoration and maintenance strategy in reducing the risk of cognitive decline

    IBtkα Activates the β‐Catenin‐Dependent Transcription of MYC through Ubiquitylation and Proteasomal Degradation of GSK3βin Cancerous B Cells

    Get PDF
    The IBTK gene encodes the IBtkα protein that is a substrate receptor of E3 ubiquitin ligase, Cullin 3. We have previously reported the pro‐tumorigenic activity of Ibtk in MYC‐dependent B‐ lymphomagenesis observed in Eμ‐myc transgenic mice. Here, we provide mechanistic evidence of the functional interplay between IBtkα and MYC. We show that IBtkα, albeit indirectly, activates the β‐catenin‐dependent transcription of the MYC gene. Of course, IBtkαassociates with GSK3β and promotes its ubiquitylation, which is associated with proteasomal degradation. This event increases the protein level of β‐catenin, a substrate of GSK3β, and results in the transcriptional activation of the MYC and CCND1 target genes of β‐catenin, which are involved in the control of cell division and apoptosis. In particular, we found that in Burkitt’s lymphoma cells, IBtkα silencing triggered the downregulation of both MYC mRNA and protein expression, as well as a strong decrease of cell survival, mainly through the induction of apoptotic events, as assessed by using flow cytometry‐based cell cycle and apoptosis analysis. Collectively, our results shed further light on the complex puzzle of IBtkα interactome and highlight IBtkα as a potential novel therapeutic target to be employed in the strategy for personalized therapy of B cell lymphoma

    The expression of inhibitor of bruton's tyrosine kinase gene is progressively up regulated in the clinical course of chronic lymphocytic leukaemia conferring resistance to apoptosis.

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is the most common B-cell malignancy with a variable clinical outcome. Biomarkers of CLL progression are required for optimising prognosis and therapy. The Inhibitor of Bruton's tyrosine kinase-isoform α (IBTKα) gene encodes a substrate receptor of Cullin 3-dependent E3 ubiquitin ligase, and promotes cell survival in response to the reticulum stress. Searching for novel markers of CLL progression, we analysed the expression of IBTKα in the peripheral blood B-cells of CLL patients, before and after first line therapy causing remission. The expression of IBTKα was significantly increased in disease progression, and decreased in remission after chemotherapy. Consistently with a pro-survival action, RNA interference of IBTKα increased the spontaneous and Fludarabine-induced apoptosis of MEC-1 CLL cells, and impaired the cell cycle of DeFew B-lymphoma cells by promoting the arrest in G0/G1 phase and apoptosis. Consistently, RNA interference of IBTKα up regulated the expression of pro-apoptotic genes, including TNF, CRADD, CASP7, BNIP3 and BIRC3. Our results indicate that IBTKα is a novel marker of CLL progression promoting cell growth and resistance to apoptosis. In this view, IBTKα may represent an attractive cancer drug target for counteracting the therapy-resistance of tumour cells

    Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes.

    Get PDF
    Abstract Tumor-derived exosomes (TDEs) play a pivotal role in tumor establishment and progression, and are emerging biomarkers for tumor diagnosis in personalized medicine. To date, there is a lack of efficient technology platforms for exosome isolation and characterization. Multiple myeloma (MM) is an incurable B-cell malignancy due to the rapid development of drug-resistance. MM-released exosomes express the immunoglobulin B-cell receptor (Ig-BCR) of the tumor B-cells, which can be targeted by Idiotype-binding peptides (Id-peptides). In this study, we analyzed the production of MM-released exosomes in the murine 5T33MM multiple myeloma model as biomarkers of tumor growth. To this end, we selected Id-peptides by screening a phage display library using as bait the Ig-BCR expressed by 5T33MM cells. By FACS, the FITC-conjugated Id-peptides detected the MM-released exosomes in the serum of 5T33MM-engrafted mice, levels of which are correlated with tumor progression at an earlier time point compared to serum paraprotein. These results indicate that Id-peptide-based recognition of MM-released exosomes may represent a very sensitive diagnostic approach for clinical evaluation of disease progression

    Lipid Accumulation in Hearts Transplanted From Nondiabetic Donors to Diabetic Recipients

    Get PDF
    Background: Early pathogenesis of diabetic cardiomyopathy (DMCM) may involve lipotoxicity of cardiomyocytes in the context of hyperglycemia. There are many preclinical studies of DMCM pathogenesis, but the human evidence is still poorly understood. Objectives: By using a nondiabetic mellitus (non-DM) heart transplanted (HTX) in diabetes mellitus (DM) recipients, this study conducted a serial study of human heart transplant recipients evaluating cardiac effects of diabetic milieu (hyperglycemia and insulin resistance) on lipotoxic-mediated injury. We evaluated cardiomyocyte morpho-pathology by seriated biopsies of healthy implanted hearts in DM recipients during 12-month follow-up from HTX. Because metformin reduces ectopic lipid accumulation, we evaluated the effects of the drug in a nonrandomized subgroup. Methods: The DMCM-AHEAD (Diabetes and Lipid Accumulation and Heart Transplant) prospective ongoing study (NCT03546062) evaluated 158 first HTX recipients (82 non-DM, 76 DM of whom 35 [46%] were receiving metformin). HTX recipients were undergoing clinical standard evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsies). Biopsies evaluated immune response, Oil Red-O staining, ceramide, and triacylglycerol levels. Lipotoxic factors and insulin resistance were evaluated by reverse transcriptase–polymerase chain reaction. Results: There was a significant early and progressive cardiomyocyte lipid accumulation in DM but not in non-DM recipients (p = 0.019). In the subgroup receiving metformin, independently from immunosuppressive therapy that was similar among groups, lipid accumulation was reduced in comparison with DM recipients not receiving the drug (hazard ratio: 6.597; 95% confidence interval: 2.516 to 17.296; p < 0.001). Accordingly, lipotoxic factors were increased in DM versus non-DM recipients, and, relevantly, metformin use was associated with fewer lipotoxic factors. Conclusions: Early pathogenesis of human DMCM started with cardiomyocyte lipid accumulation following HTX in DM recipients. Metformin use was associated with reduced lipid accumulation independently of immunosuppressive therapy. This may constitute a novel target for therapy of DMCM

    Lipid Accumulation in Hearts Transplanted From Nondiabetic Donors to Diabetic Recipients

    Get PDF
    Background: Early pathogenesis of diabetic cardiomyopathy (DMCM) may involve lipotoxicity of cardiomyocytes in the context of hyperglycemia. There are many preclinical studies of DMCM pathogenesis, but the human evidence is still poorly understood. Objectives: By using a nondiabetic mellitus (non-DM) heart transplanted (HTX) in diabetes mellitus (DM) recipients, this study conducted a serial study of human heart transplant recipients evaluating cardiac effects of diabetic milieu (hyperglycemia and insulin resistance) on lipotoxic-mediated injury. We evaluated cardiomyocyte morpho-pathology by seriated biopsies of healthy implanted hearts in DM recipients during 12-month follow-up from HTX. Because metformin reduces ectopic lipid accumulation, we evaluated the effects of the drug in a nonrandomized subgroup. Methods: The DMCM-AHEAD (Diabetes and Lipid Accumulation and Heart Transplant) prospective ongoing study (NCT03546062) evaluated 158 first HTX recipients (82 non-DM, 76 DM of whom 35 [46%] were receiving metformin). HTX recipients were undergoing clinical standard evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsies). Biopsies evaluated immune response, Oil Red-O staining, ceramide, and triacylglycerol levels. Lipotoxic factors and insulin resistance were evaluated by reverse transcriptase–polymerase chain reaction. Results: There was a significant early and progressive cardiomyocyte lipid accumulation in DM but not in non-DM recipients (p = 0.019). In the subgroup receiving metformin, independently from immunosuppressive therapy that was similar among groups, lipid accumulation was reduced in comparison with DM recipients not receiving the drug (hazard ratio: 6.597; 95% confidence interval: 2.516 to 17.296; p < 0.001). Accordingly, lipotoxic factors were increased in DM versus non-DM recipients, and, relevantly, metformin use was associated with fewer lipotoxic factors. Conclusions: Early pathogenesis of human DMCM started with cardiomyocyte lipid accumulation following HTX in DM recipients. Metformin use was associated with reduced lipid accumulation independently of immunosuppressive therapy. This may constitute a novel target for therapy of DMCM

    Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts

    Get PDF
    Background: The pathogenesis of experimental diabetic cardiomyopathy may involve the activator protein 1 (AP-1) member, JunD. Using non-diabetic heart transplant (HTX) in recipients with diabetes, we examined the effects of the diabetic milieu (hyperglycemia and insulin resistance) on cardiac JunD expression over 12 months. Because sodium/glucose cotransporter-2 inhibitors (SGLT2i) significantly reverse high glucose-induced AP-1 binding in the proximal tubular cell, we investigated JunD expression in a subgroup of type 2 diabetic recipients receiving SGLT2i treatment. Methods: We evaluated 77 first HTX recipients (40 and 37 patients with and without diabetes, respectively). Among the recipients with diabetes, 17 (45.9%) were receiving SGLT2i treatment. HTX recipients underwent standard clinical evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsy). In the biopsy samples, we evaluated JunD, insulin receptor substrates 1 and 2 (IRS1 and IRS2), peroxisome proliferator-activated receptor-γ (PPAR-γ), and ceramide levels using real-time polymerase chain reaction and immunofluorescence. The biopsy evaluations in this study were performed at 1–4 weeks (basal), 5–12 weeks (intermediate), and up to 48 weeks (final, end of 12-month follow-up) after HTX. Results: There was a significant early and progressive increase in the cardiac expression of JunD/PPAR-γ and ceramide levels, along with a significant decrease in IRS1 and IRS2 in recipients with diabetes but not in those without diabetes. These molecular changes were blunted in patients with diabetes receiving SGLT2i treatment. Conclusion: Early pathogenesis in human diabetic cardiomyopathy is associated with JunD/PPAR-γ overexpression and lipid accumulation following HTX in recipients with diabetes. Remarkably, this phenomenon was reduced by concomitant therapy with SGLT2i, which acted directly on diabetic hearts
    corecore