58 research outputs found
Mapping and gapping services for children, young people and families in Blacon
This research report provides a map of the services available to children and families in Blacon and explores whether there are any gaps in provision.Blacon Education Villag
The Effect of Market and Leasing Conditions on the Techno-economic Performance of Complex CO2 transport and storage value chains
AbstractThe complex interplay of capital and operating costs that results from different CO2 transport and storage network configurations, and the market conditions in which they develop is investigated using the life cycle CO2 storage cost model and the multi-period CCS network optimisation model developed by Imperial College. These tools integrate seamlessly the geological characteristics, engineering aspects and the economics of complex CCS chains. The paper demonstrates that these models capture effectively and accurately the effects of market and leasing conditions on the techno-economic performance of complex CCS value chains. The results reveal that saline aquifers and depleted oil and gas fields may differ significantly in terms of cost performance. It is also shown that it is important to evaluate the technical and economic performance of the CCS value chain as a whole, rather than in individual components in order to ensure the financial viability of CCS projects
The political economy of competitiveness and social mobility
Social mobility has become a mainstream political and media issue in recent years in the United Kingdom. This article suggests that part of the reason for this is that it can serve as a mechanism to discuss policy concerns that appear to be about social justice without questioning important aspects of neo-liberal political economy. The article charts the policy rhetoric on social mobility under both New Labour and the current Coalition Government. It is argued first that under New Labour the apparent commitment to social mobility was in fact subsumed beneath the pursuit of neo-liberal competitiveness, albeit imperfectly realised in policy. Second, the article suggests that under the Coalition Government the commitment to raising levels of social mobility has been retained and the recently published Strategy for Social Mobility promises that social mobility is what the Coalition means when it argues that the austerity programme is balanced with ‘fairness’. Third, however, the Strategy makes clear that the Coalition define social mobility in narrower terms than the previous government. It is argued here that in narrowing the definition the connection with the idea of competitiveness, while still clearly desirable for the Coalition, is weakened. Fourth, a brief analysis of the Coalition's main policy announcements provides little evidence to suggest that even the narrow definition set out in the Strategy is being seriously pursued. Fifth, the international comparative evidence suggests that any strategy aimed at genuinely raising the level of social mobility would need to give much more serious consideration to narrowing levels of inequality. Finally, it is concluded that when considered in the light of the arguments above, the Strategy for Social Mobility – and therefore ‘Fairness’ itself – is merely a discursive legitimation of the wider political economy programme of austerity
Moving toward the low-carbon hydrogen economy: experiences and key learnings from national case studies
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050, as first presented by the IPCC special report on 1.5 °C Global Warming, has spurred renewed interest in hydrogen, to complement electrification, for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand, optimization of infrastructure for hydrogen production, transport and storage, development of viable business cases, and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany, the UK, the Netherlands, Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore, timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies, such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning, governance, and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets
Social mobility among Christian Africans: evidence from Anglican marriage registers in Uganda, 1895-2011
This article uses Anglican marriage registers from colonial and post-colonial Uganda to investigate long-term trends and determinants of intergenerational social mobility and colonial elite formation among Christian African men. It shows that the colonial era opened up new labour opportunities for these African converts, enabling them to take large steps up the social ladder regardless of their social origin. Contrary to the widespread belief that British indirect rule perpetuated the power of African political elites (chiefs), this article shows that a remarkably fluid colonial labour economy actually undermined their social advantages. Sons of chiefs gradually lost their high social-status monopoly to a new, commercially orientated, and well-educated class of Anglican Ugandans, who mostly came from non-elite and sometimes even lower-class backgrounds. The study also documents that the colonial administration and the Anglican mission functioned as key steps on the ladder to upward mobility. Mission education helped provide the skills and social reference needed to climb the ladder in exchange for compliance with the laws of the Anglican Church. These social mobility patterns persisted throughout the post-colonial era, despite rising levels of informal labour during Idi Amin’s dictatorship
Optimising CO2 storage in geological formations; a case study ofshore Scotland - CO2 MultiStore project
Carbon capture, transport and storage (CCS) is considered a key technology to provide a secure, low-carbon energy supply and reduce the greenhouse gas emissions (DECC, 2014) that contribute to the adverse effects of climatic change (IPCC, 2014). Commercialisation projects for the permanent storage of carbon dioxide (CO2) captured at power plants are currently in the design stage for the Peterhead, White Rose, Caledonia Clean Energy (DECC, 2013, 2015) and Don Valley projects. Storage of the CO2 captured by these projects is planned in strata deep beneath the North Sea in depleted hydrocarbon fields or regionally extensive sandstones containing brine (saline aquifer sandstones).
The vast majority of the UK and Scotland's potential storage resource, which is of European significance (SCCS, 2009), is within brine-saturated sandstone formations. The sandstone formations are each hundreds to thousands of square kilometres in extent and underlie all sectors of the North Sea. The immense potential to store CO2 in these rocks can only be fully achieved by the operation of more than one injection site within each formation.
Government, university and research institutes, industry, and stakeholder organisations have anticipated the need
to inform a second phase of CCS developments following on from a commercialisation project in Scotland. The CO2MultiStore study, led by Scottish Carbon Capture and Storage (SCCS), investigates the operation of more than one injection site within a storage formation using a North Sea case study. The Captain Sandstone, within the mature oil and gas province offshore Scotland, contains the Goldeneye Field, which is the planned storage site for the Peterhead CCS project. Previous research (SCCS, 2011) was augmented by data from offshore hydrocarbon exploration and detailed investigation of the Goldeneye Field for CO2 storage (Shell, 2011a-i).
The research was targeted to increase understanding and confidence in the operation of two or more sites within
the Captain Sandstone. Methods were implemented to reduce the effort and resources needed to characterise the sandstone, and increase understanding of its stability and performance during operation of more than one injection site. Generic learning was captured throughout the CO2MultiStore project relevant to the characterisation of the extensive storage sandstones, management of the planned injection operations and monitoring of CO2 injection at two (or more) sites within any sandstone formation.
The storage of CO2 can be optimised by the operation of more than one injection site in a geological formation by
taking a regional-scale approach to site assessment. The study concludes that at least 360 million tonnes of CO2 captured over the coming 35 years could be permanently stored using two injection sites in the Captain Sandstone. Confidence in the planned operation of two or more injection sites in a storage formation is greatly increased by the use of existing information, knowledge and data acquired during hydrocarbon exploitation.
Widespread pressure changes should be expected by the injection of CO2 at more than one site. Assessment, management and monitoring of pressure changes on a regional scale will optimise the storage capacity, ensure security of storage and prevent adverse effects to existing storage and hydrocarbon operations.
The vast offshore potential across all sectors of the North Sea could be made accessible and practical for storage of CO2 captured from European sources by the operation of two or more sites in a storage formation by following the approach taken in CO2MultiStore.Carbon capture, transport and storage (CCS) is considered a key technology to provide a secure, low-carbon energy supply and reduce the greenhouse gas emissions (DECC, 2014) that contribute to the adverse effects of climatic change (IPCC, 2014). Commercialisation projects for the permanent storage of carbon dioxide (CO2) captured at power plants are currently in the design stage for the Peterhead, White Rose, Caledonia Clean Energy (DECC, 2013, 2015) and Don Valley projects. Storage of the CO2 captured by these projects is planned in strata deep beneath the North Sea in depleted hydrocarbon fields or regionally extensive sandstones containing brine (saline aquifer sandstones).
The vast majority of the UK and Scotland's potential storage resource, which is of European significance (SCCS, 2009), is within brine-saturated sandstone formations. The sandstone formations are each hundreds to thousands of square kilometres in extent and underlie all sectors of the North Sea. The immense potential to store CO2 in these rocks can only be fully achieved by the operation of more than one injection site within each formation.
Government, university and research institutes, industry, and stakeholder organisations have anticipated the need
to inform a second phase of CCS developments following on from a commercialisation project in Scotland. The CO2MultiStore study, led by Scottish Carbon Capture and Storage (SCCS), investigates the operation of more than one injection site within a storage formation using a North Sea case study. The Captain Sandstone, within the mature oil and gas province offshore Scotland, contains the Goldeneye Field, which is the planned storage site for the Peterhead CCS project. Previous research (SCCS, 2011) was augmented by data from offshore hydrocarbon exploration and detailed investigation of the Goldeneye Field for CO2 storage (Shell, 2011a-i).
The research was targeted to increase understanding and confidence in the operation of two or more sites within
the Captain Sandstone. Methods were implemented to reduce the effort and resources needed to characterise the sandstone, and increase understanding of its stability and performance during operation of more than one injection site. Generic learning was captured throughout the CO2MultiStore project relevant to the characterisation of the extensive storage sandstones, management of the planned injection operations and monitoring of CO2 injection at two (or more) sites within any sandstone formation.
The storage of CO2 can be optimised by the operation of more than one injection site in a geological formation by
taking a regional-scale approach to site assessment. The study concludes that at least 360 million tonnes of CO2 captured over the coming 35 years could be permanently stored using two injection sites in the Captain Sandstone. Confidence in the planned operation of two or more injection sites in a storage formation is greatly increased by the use of existing information, knowledge and data acquired during hydrocarbon exploitation.
Widespread pressure changes should be expected by the injection of CO2 at more than one site. Assessment, management and monitoring of pressure changes on a regional scale will optimise the storage capacity, ensure security of storage and prevent adverse effects to existing storage and hydrocarbon operations.
The vast offshore potential across all sectors of the North Sea could be made accessible and practical for storage of CO2 captured from European sources by the operation of two or more sites in a storage formation by following the approach taken in CO2MultiStore
- …