190 research outputs found
A sentence classification framework to identify geometric errors in radiation therapy from relevant literature
The objective of systematic reviews is to address a research question by summarizing relevant studies following a detailed, comprehensive, and transparent plan and search protocol to reduce bias. Systematic reviews are very useful in the biomedical and healthcare domain; however, the data extraction phase of the systematic review process necessitates substantive expertise and is labour-intensive and time-consuming. The aim of this work is to partially automate the process of building systematic radiotherapy treatment literature reviews by summarizing the required data elements of geometric errors of radiotherapy from relevant literature using machine learning and natural language processing (NLP) approaches. A framework is developed in this study that initially builds a training corpus by extracting sentences containing different types of geometric errors of radiotherapy from relevant publications. The publications are retrieved from PubMed following a given set of rules defined by a domain expert. Subsequently, the method develops a training corpus by extracting relevant sentences using a sentence similarity measure. A support vector machine (SVM) classifier is then trained on this training corpus to extract the sentences from new publications which contain relevant geometric errors. To demonstrate the proposed approach, we have used 60 publications containing geometric errors in radiotherapy to automatically extract the sentences stating the mean and standard deviation of different types of errors between planned and executed radiotherapy. The experimental results show that the recall and precision of the proposed framework are, respectively, 97% and 72%. The results clearly show that the framework is able to extract almost all sentences containing required data of geometric errors
Motion Capture Pillow (MCP): A novel method to improve comfort and accuracy in radiotherapy
The delivery of radiotherapy has changed signi?cantly over the last few decades. Recent advances in radiotherapy practice may increase patient discomfort. A key challenge to improve patient comfort is the common use of a thermoplastic mask for patients with head and neck cancers. Patients suffer from discomfort and the claustrophobic effect of the mask, or as they lose soft tissue due to treatment and gain undesirable movement in the mask. A prototype system using a robotic motion capture pillow (MCP) is investigated for proof-of-concept and is pictorially presented for the potential replacement of thermoplastic masks
Two behavioural traits promote fine-scale species segregation and moderate hybridisation in a recovering sympatric fur seal population
Background: In systems where two or more species experience secondary contact, behavioural factors that regulate interspecific gene flow may be important for maintaining species boundaries and reducing the incidence of hybridisation. At subantarctic Macquarie Island, two species of fur seal breed in close proximity to one another, hybridise at very high levels (up to 21% of hybrid pups are born annually), yet retain discrete gene pools. Using spatial and genetic information collected for pups and adults over twelve years, we assessed two behavioural traits – interannual site fidelity and differences in habitat use between the species - as possible contributors to the maintenance of this species segregation. Further, we explored the breakdown of these traits in pure-species individuals and hybrids. Results: We found virtually complete spatial segregation of the parental species, with only one exception; a single territory that contained adults of both species and also the highest concentration of hybrid pups. The spatial distribution of each species was closely linked to habitat type (pebbled vs boulder beaches), with members of each species breeding almost exclusively on one type or the other but hybrids breeding on both or at the junction between habitats. Inter-annual site fidelity was high for both sexes of pure-species adults, with 66% of females and all males returning to the same territory or a neighbouring one in different years. An important consequence for pure females of breeding on the 'wrong' habitat type, and thus in a heterospecific aggregation, was the production of hybrid pups. Low habitat fidelity of hybrid females facilitated bi-directional backcrossing, resulting in more diverse hybrid offspring. Conclusion: In a disturbed system where two sympatric fur seal species breed in close proximity, discrete gene pools are retained by extremely fine-scale and strong spatial segregation of the species. Two behavioural traits were found to be important in maintaining this stable population structure, and habitat type was a strong indicator of where species locate and a potentially powerful predictor of future directions of hybridisation. A direct consequence of the breakdown of this trait was the production of hybrid offspring, which may have severe implications if hybrids have reduced fitness.Melanie L Lancaster, Simon D Goldsworthy and Paul Sunnuck
Adding to the Family of Copper Complexes Featuring Borohydride Ligands Based on 2-Mercaptopyridyl Units
Borohydride ligands featuring multiple pendant donor functionalities have been prevalent in the chemical literature for many decades now. More recent times has seen their development into new families of so-called soft scorpionates, for example, those featuring sulfur based donors. Despite all of these developments, those ligands containing just one pendant group are rare. This article explores one ligand family based on the 2-mercaptopyridine heterocycle. The coordination chemistry of the monosubstituted ligand, [H3B(mp)]− (mp = 2-mercaptopyridyl), has been explored. Reaction of Na[BH3(mp)] with one equivalent of Cu(I)Cl in the presence of either triphenylphosphine or tricyclohexylphosphine co-ligands leads to the formation of [Cu{H3B(mp)}(PR3)] (R = Ph, 1; Cy, 2), respectively. Structural characterization confirms a κ3-S,H,H coordination mode for the borohydride-based ligand within 1 and 2, involving a dihydroborate bridging interaction (BH2Cu) with the copper centers
Plastic induced urinary tract disease and dysfunction: a scoping review
Introduction: In 2019 the World Health Organisation published a report which concluded microplastics in drinking water did not present a threat to human health. Since this time a plethora of research has emerged demonstrating the presence of plastic in various organ systems and their deleterious pathophysiological effects.Methods: A scoping review was undertaken in line with recommendations from the Johanna Briggs Institute. Five databases (PubMed, SCOPUS, CINAHL, Web of Science and EMBASE) were systematically searched in addition to a further grey literature search.Results: Eighteen articles were identified, six of which investigated and characterised the presence of microplastics and nanoplastics (MNPs) in the human urinary tract. Microplastics were found to be present in kidney, urine and bladder cancer samples. Twelve articles investigated the effect of MNPs on human cell lines associated with the human urinary tract. These articles suggest MNPs have a cytotoxic effect, increase inflammation, decrease cell viability and alter mitogen-activated protein kinases (MAPK) signalling pathways.Conclusion: Given the reported presence MNPs in human tissues and organs, these plastics may have potential health implications in bladder disease and dysfunction. As a result, institutions such as the World Health Organisation need to urgently re-evaluate their position on the threat of microplastics to public health.Impact statement: This scoping review highlights the rapidly emerging threat of microplastic contamination within the human urinary tract, challenging the World Health Organisation’s assertion that microplastics pose no risk to public health. The documented cytotoxic effects of microplastics, alongside their ability to induce inflammation, reduce cell viability and disrupt signalling pathways, raise significant public health concerns relating to bladder cancer, chronic kidney disease, chronic urinary tract infections and incontinence. As a result, this study emphasises the pressing need for further research and policy development to address the challenges surrounding microplastic contamination.<br/
The potential for haptic touch technology to supplement human empathetic touch during radiotherapy
Radiotherapy for cancer is an effective treatment but requires precise delivery. Patients are required to remain still in the same position during procedure which may be uncomfortable. This combined with high anxiety experienced by patients, and feelings of isolation, have indicated a need for comfort interventions. Care conveyed through empathetic touch promotes comfort, individual attention and presence and provides both psychological and physical comfort at the same time. Evidence in nursing and care literature showed that empathetic touch interventions have a significant role in promoting comfort, facilitating communication between care recipients and caregivers. However, the application of empathetic touch interventions may be challenging to administer due to the safety concern in the radiotherapy environment. The emergence of haptic technologies that enable the communication of touch remotely may have a potential to fill this gap. We take inspiration from both clinical empathetic touch in radiotherapy practice, as well as affective haptic technologies to envision the opportunities for haptic technologies as a complimentary comfort intervention to supplement human empathetic touch during radiotherapy
Effects of an electric field on white sharks: in situ testing of an electric deterrent
Elasmobranchs can detect minute electromagnetic fields, <1 nVcm -1 , using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7â„¢ electric deterrent on (1) the behaviour of 18 white sharks ( Carcharodon carcharias ) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks
Fur seals do, but sea lions don’t – cross taxa insights into exhalation during ascent from dives
Many agencies provided funding and logistical support for the various research efforts resulting in the data presented here: the South African Department of Science and Technology, administered by the National Research Foundation and the Department of Environmental Affairs for subantarctic fur seal work; the Australian Research Council (DP110102065), Holsworth Wildlife Research Endowment and the Office of Naval Research (Marine Mammals and Biological Oceanography Program Award no. N00014-10-1-0385) for Australian fur seal work; the National Oceanic and Atmospheric Administration (NOAA) via grants to the Alaska SeaLife Center and the National Marine Mammal Laboratory, with additional funding and logistical support from North Pacific Wildlife Consulting for Steller sea lion and northern fur seal (Russia) work; the National Marine Mammal Laboratory, National Marine Fisheries Service, NOAA for northern fur seal (Alaska) work. Research support for R.W. Davis was provided by the National Science Foundation.Management of gases during diving is not well understood across marine mammal species. Prior to diving, phocid (true) seals generally exhale, a behaviour thought to assist with the prevention of decompression sickness. Otariid seals (fur seals and sea lions) have a greater reliance on their lung oxygen stores, and inhale prior to diving. One otariid, the Antarctic fur seal (Arctocephalus gazella), then exhales during the final 50–85% of the return to the surface, which may prevent another gas management issue: shallow-water blackout. Here, we compare data collected from animal-attached tags (video cameras, hydrophones and conductivity sensors) deployed on a suite of otariid seal species to examine the ubiquity of ascent exhalations for this group. We find evidence for ascent exhalations across four fur seal species, but that such exhalations are absent for three sea lion species. Fur seals and sea lions are no longer genetically separated into distinct subfamilies, but are morphologically distinguished by the thick underfur layer of fur seals. Together with their smaller size and energetic dives, we suggest their air-filled fur might underlie the need to perform these exhalations, although whether to reduce buoyancy and ascent speed, for the avoidance of shallow-water blackout or to prevent other cardiovascular management issues in their diving remains unclear.PostprintPostprintPeer reviewe
Regulation of the mTOR signaling pathway: from laboratory bench to bedside and back again
Recent publications have moved us significantly closer to a complete understanding of the mammalian target of rapamycin (mTOR) signaling pathway, which plays a central role in the control of growth and metabolism and is dysregulated in a broad spectrum of human diseases, including cancer, tuberous sclerosis, diabetes, and cardiovascular and neurodegenerative diseases. Rapamycin-related mTOR inhibitors have shown clinical efficacy in several of these diseases, and novel inhibitors currently in development will be valuable tools for further dissections of the mTOR signaling network in human health and disease
Using sea lion-borne video to map diverse benthic habitats in southern Australia
Across the world’s oceans, our knowledge of the habitats on the seabed is limited. Increasingly, video/imagery data from remotely operated underwater vehicles (ROVs) and towed and drop cameras, deployed from vessels, are providing critical new information to map unexplored benthic (seabed) habitats. However, these vessel-based surveys involve considerable time and personnel, are costly, require favorable weather conditions, and are difficult to conduct in remote, offshore, and deep marine habitats, which makes mapping and surveying large areas of the benthos challenging. In this study, we present a novel and efficient method for mapping diverse benthic habitats on the continental shelf, using animal-borne video and movement data from a benthic predator, the Australian sea lion (Neophoca cinerea). Six benthic habitats (between 5-110m depth) were identified from data collected by eight Australian sea lions from two colonies in South Australia. These habitats were macroalgae reef, macroalgae meadow, bare sand, sponge/sand, invertebrate reef and invertebrate boulder habitats. Percent cover of benthic habitats differed on the foraging paths of sea lions from both colonies. The distributions of these benthic habitats were combined with oceanographic data to build Random Forest models for predicting benthic habitats on the continental shelf. Random forest models performed well (validated models had a >98% accuracy), predicting large areas of macroalgae reef, bare sand, sponge/sand and invertebrate reef habitats on the continental shelf in southern Australia. Modelling of benthic habitats from animal-borne video data provides an effective approach for mapping extensive areas of the continental shelf. These data provide valuable new information on the seabed and complement traditional methods of mapping and surveying benthic habitats. Better understanding and preserving these habitats is crucial, amid increasing human impacts on benthic environments around the world
- …