526 research outputs found

    Investigation of the Rupture Initiation and Mechanical Performance of Alumina Port Covers for Integrated Rocket Ramjet Systems

    Get PDF
    Hypersonic flight is widely considered essential to ensure a competitive defensive capability in the United States. In hypersonic air breathing propulsion, cruise vehicles are a priority research and development area given the ease to which they can be implemented with existing DoD infrastructure. Advancements in ramjet engine systems, including integrated rocket ramjets, play a considerable role in military and space access hypersonic vehicle designs. By design, ramjets cannot produce static thrust. They first need to be brought to operational speeds with the help of a rocket booster. An integrated rocket ramjet (IRR) combines the booster phase and the ramjet phase in one single propulsion chain, further enhancing the systems efficiency. The key factor in IRR flight success is the separation of these two phases achieved by the use of a port cover, which will be discussed in detail throughout this paper. In support of the continued maturation of IRR technologies, the University of Tennessee Space Institute has collaborated with Air Force Research Labs, NASA Langley Research Center and the Defense Science and Technology Labs to investigate the viability of alumina port covers through a numerical and experimental campaign. Verified by finite element stress analysis, UTSI tested alumina port covers with a 45-degree dome angle and 6mm thickness that were fabricated and purchased from three external vendors. Flight conditions were simulated using a high-pressure chamber and a mechanical fracturing mechanism was used to initiate fracture on the pressurized port covers. High-speed cameras and retroreflective shadowgraphy techniques were used to obtain initial crack propagation patterns and average fragment velocity. The fragments were collected post-rupture and measured to estimate an average fragment size. It is imperative the fragment size is small enough to ensure no damage will occur to the internal structure of the flight vehicle during exit. Ultimately, the goal of this research is to determine if alumina port covers are suitable for vehicle use

    Numerical simulations of the Fourier transformed Vlasov-Maxwell system in higher dimensions --- Theory and applications

    Full text link
    We present a review of recent developments of simulations of the Vlasov-Maxwell system of equations using a Fourier transform method in velocity space. In this method, the distribution functions for electrons and ions are Fourier transformed in velocity space, and the resulting set of equations are solved numerically. In the original Vlasov equation, phase mixing may lead to an oscillatory behavior and sharp gradients of the distribution function in velocity space, which is problematic in simulations where it can lead to unphysical electric fields and instabilities and to the recurrence effect where parts of the initial condition recur in the simulation. The particle distribution function is in general smoother in the Fourier transformed velocity space, which is desirable for the numerical approximations. By designing outflow boundary conditions in the Fourier transformed velocity space, the highest oscillating terms are allowed to propagate out through the boundary and are removed from the calculations, thereby strongly reducing the numerical recurrence effect. The outflow boundary conditions in higher dimensions including electromagnetic effects are discussed. The Fourier transform method is also suitable to solve the Fourier transformed Wigner equation, which is the quantum mechanical analogue of the Vlasov equation for classical particles.Comment: 41 pages, 19 figures. To be published in Transport Theory and Statistical Physics. Proceedings of the VLASOVIA 2009 Workshop, CIRM, Luminy, Marseilles, France, 31 August - 4 September 200

    Synchrotron Radiation From Radiatively Inefficient Accretion Flow Simulations: Applications to Sgr A*

    Full text link
    We calculate synchrotron radiation in three-dimensional pseudo-Newtonian magnetohydrodynamic simulations of radiatively inefficient accretion flows. We show that the emission is highly variable at optically thin frequencies, with order of magnitude variability on time-scales as short as the orbital period near the last stable orbit; this emission is linearly polarized at the 20-50 % level due to the coherent toroidal magnetic field in the flow. At optically thick frequencies, both the variability amplitude and polarization fraction decrease significantly with decreasing photon frequency. We argue that these results are broadly consistent with the observed properties of Sgr A* at the Galactic Center, including the rapid infrared flaring.Comment: Accepted for publication in Ap

    A web-based resource for radiation safety courses

    Get PDF
    CQU runs regular courses for intending Radiation Safety Officers from a variety of industry sectors. Participants have varying levels of prior knowledge to bring to the intensive three day program. To cater for those students whose prior knowledge of radiation physics is weak the print-based media for the course have been converted into a CD-ROM incorporating animations, worked examples, progress checks and self-assessment items. This allows the students who need extra study time on the basic physics concepts to cover as much as possible of the material before commencement of the course. The first course sessions can then concentrate on students’ individual problems and the required program content. This approach also allows the student with strong prior learning to submit an assessment test and be awarded a partial course exemption. Although the material selection is specifically for Radiation Safety training the CD-ROM has also been used in bridging courses, as reinforcement for first year students, and within our Engineering Technology Instrumentation program. The number of students who have used the CD-ROM is not statistically significant but student feedback on the material is very positive

    Candidate RR Lyrae Stars Found in Sloan Digital Survey Commissioning Data,

    Get PDF
    We present a sample of 148 candidate RR Lyrae stars selected from Sloan Digital Sky Survey (SDSS) commissioning data for about 100 deg2 of sky surveyed twice with t = 1.9946 days. Although the faint-magnitude limit of the SDSS allows us to detect RR Lyrae stars to large Galactocentric distances (100 kpc, or r* 21), we find no candidates fainter than r* 20, i.e., farther than 65 kpc from the Galactic center. On the assumption that all 148 candidates are indeed RR Lyrae stars (contamination by other species of variable star is probably less than 10%), we find that their volume density has roughly a power-law dependence on Galactocentric radius, R-2.7±0.2, between 10 and 50 kpc and drops abruptly at R 5060 kpc, possibly indicating a sharp edge to the stellar halo as traced by RR Lyrae stars. The Galactic distribution of stars in this sample is very inhomogeneous and shows a clump of over 70 stars at about 45 kpc from the Galactic center. This clump is also detected in the distribution of nonvariable objects with RR Lyrae star colors. When sources in the clump are excluded, the best power-law fit becomes consistent with the R-3 distribution found from surveys of bright RR Lyrae stars. These results imply that the halo containsclumpy overdensities inhomogeneously distributed within a smooth R-3 background, with a possible cutoff at 50 kpc

    Exposure to Host Ligands Correlates with Colocalization of Gal/GalNAc Lectin Subunits in Lipid Rafts and Phosphatidylinositol (4,5)-Bisphosphate Signaling in Entamoeba histolytica

    Get PDF
    Entamoeba histolytica is an intestinal parasite that causes dysentery and liver abscess. Parasite cell surface receptors, such as the Gal/GalNAc lectin, facilitate attachment to host cells and extracellular matrix. The Gal/GalNAc lectin binds to galactose or N-acetylgalactosamine residues on host components and is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Although Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), Hgl and Lgl transiently associate with this compartment in a cholesterol-dependent fashion. In this study, trophozoites were exposed to biologically relevant ligands to determine if ligand binding influences the submembrane distribution of the subunits. Exposure to human red blood cells (hRBCs) or collagen, which are bona fide Gal/GalNAc lectin ligands, was correlated with enrichment of Hgl and Lgl in rafts. This enrichment was abrogated in the presence of galactose, suggesting that direct lectin-ligand interactions are necessary to influence subunit location. Using a cell line that is able to attach to, but not phagocytose, hRBCs, it was shown that physical attachment to ligands was not sufficient to induce the enrichment of lectin subunits in rafts. Additionally, the mutant had lower levels of phosphatidylinositol (4,5)-bisphosphate (PIP2); PIP2 loading restored the ability of this mutant to respond to ligands with enrichment of subunits in rafts. Finally, intracellular calcium levels increased upon attachment to collagen; this increase was essential for the enrichment of lectin subunits in rafts. Together, these data provide evidence that ligand-induced enrichment of lectin subunits in rafts may be the first step in a signaling pathway that involves both PIP2 and calcium signaling

    Confinement studies with neutral-beam injection on PDX and PLT

    Full text link
    Neutral beam injection experiments on PLT and PDX have been conducted over a wider range in parameter space than previously. On PLT H/sup 0/ beams have been injected into well-confined high toroidal field, high density Ohmic plasmas, giving n/sub e/(0) tau/sub Ee/ products during injection of up to 5 x 10/sup 12/ sec cm/sup -3/. tau/sub Ee/ is found to rise slowly with increasing density in these experiments. Comparing these results with earlier (1979) discharges, which showed much lower heating efficiency, the importance of starting with a hot Ohmic plasma and a peaked density profile is striking. On PDX high power injection experiments over a range in plasma current have shown a significant variation with current of both ion heating and total stored plasma energy. Transport analysis of these results indicates that global confinement drops little when I/sup p/ is varied from 480 to 320 kA, but as I/sup p/ falls to 200 kA, tau/sub E/ deteriorates significantly

    Comparison between resistive and collisionless double tearing modes for nearby resonant surfaces

    Get PDF
    The linear instability and nonlinear dynamics of collisional (resistive) and collisionless (due to electron inertia) double tearing modes (DTMs) are compared with the use of a reduced cylindrical model of a tokamak plasma. We focus on cases where two q = 2 resonant surfaces are located a small distance apart. It is found that regardless of the magnetic reconnection mechanism, resistivity or electron inertia, the fastest growing linear eigenmodes may have high poloidal mode numbers m ~ 10. The spectrum of unstable modes tends to be broader in the collisionless case. In the nonlinear regime, it is shown that in both cases fast growing high-m DTMs lead to an annular collapse involving small magnetic island structures. In addition, collisionless DTMs exhibit multiple reconnection cycles due to reversibility of collisionless reconnection and strong ExB flows. Collisionless reconnection leads to a saturated stable state, while in the collisional case resistive decay keeps the system weakly dynamic by driving it back towards the unstable equilibrium maintained by a source term.Comment: 15 pages, 9 figure

    A gyro-gauge independent minimal guiding-center reduction by Lie-transforming the velocity vector field

    No full text
    International audienceWe introduce a gyro-gauge independent formulation of a simplified guiding-center reduction, which removes the fast time-scale from particle dynamics by Lie-transforming the velocity vector field. This is close to Krylov-Bogoliubov method of averaging the equations of motion, although more geometric. At leading order, the Lie-transform consists in the generator of Larmor gyration, which can be explicitly inverted, while working with gauge-independent coordinates and operators, by using the physical gyro-angle as a (constrained) coordinate. This brings both the change of coordinates and the reduced dynamics of the minimal guiding-center reduction order by order in a Larmor radius expansion. The procedure is algorithmic and the reduction is systematically derived up to full second order, in a more straightforward way than when Lie-transforming the phase-space Lagrangian or averaging the equations of motion. The results write up some structures in the guiding-center expansion. Extensions and limitations of the method are considered
    • …
    corecore