3,169 research outputs found
Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California
Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH 4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7×1010g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3×10 10g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory. © 2012. American Geophysical Union. All Rights Reserved
Accurate computation of quaternions from rotation matrices
The final publication is available at link.springer.comThe main non-singular alternative to 3×3 proper orthogonal matrices, for representing rotations in R3, is quaternions. Thus, it is important to have reliable methods to pass from one representation to the other. While passing from a quaternion to the corresponding rotation matrix is given by Euler-Rodrigues formula, the other way round can be performed in many different ways. Although all of them are algebraically equivalent, their numerical behavior can be quite different. In 1978, Shepperd proposed a method for computing the quaternion corresponding to a rotation matrix which is considered the most reliable method to date. Shepperd’s method, thanks to a voting scheme between four possible solutions, always works far from formulation singularities. In this paper, we propose a new method which outperforms Shepperd’s method without increasing the computational cost.Peer ReviewedPostprint (author's final draft
Weight management: a comparison of existing dietary approaches in a work-site setting
<b>OBJECTIVES:</b> (1) To compare the effectiveness a 2512 kJ (600 kcal) daily energy deficit diet (ED) with a 6279 kJ (1500 kcal) generalized low-calorie diet (GLC) over a 24 week period (12 weeks weight loss plus 12 weeks weight maintenance). (2) To determine if the inclusion of lean red meat at least five times per week as part of a slimming diet is compatible with weight loss in comparison with a diet that excludes lean red meat.
DESIGN: Randomized controlled trial.
<b>SETTING:</b> Large petrochemical work-site.
<b>PARTICIPANTS:</b> One-hundred and twenty-two men aged between 18 and 55 y.
<b>MAIN OUTCOME MEASURES:</b> Weight loss and maintenance of weight loss.
<b>INTERVENTION:</b> Eligible volunteers were randomized to one of the four diet=meat combinations (ED meat, ED no meat, GLC meat, GLC no meat). One-third of subjects in each diet/meat combination were randomized to an initial control period prior to receiving dietary advice. All subjects attended for review every 2 weeks during the weight loss period. For the 12 week structured weight maintenance phase, individualized energy prescriptions were re-calculated for the ED group as 1.4 (activity factor)x basal metabolic rate. Healthy eating advice was reviewed with subjects in the GLC group. All subjects were contacted by electronic mail at 2 week intervals and anthropometric and dietary information requested.
<b>RESULTS:</b> No difference was evident between diet groups in mean weight loss at 12 weeks (4.3 (s.d. 3.4) kg ED group vs 5.0 (s.d. 3.5) kg GLC group, P=0.34). Mean weight loss was closer to the intended weight loss in the 2512 kJ (600 kcal) ED group. The dropout rate was also lower than the GLC group. The inclusion of lean red meat in the diet on at least five occasions per week did not impair weight loss. Mean weight gain following 12 weeks weight maintenance was þ1.1 (s.d. 1.8) kg, P<0.0001.
No differences were found between groups.
<b>CONCLUSIONS:</b> This study has shown that the individualized 2512 kJ (600 kcal) ED approach was no more effective in terms of weight loss than the 6279 kJ (1500 kcal) GLC approach. However the ED approach might be considered preferable as compliance was better with this less demanding prescription. In terms of weight loss the elimination of red meat from the diet is unnecessary. The weight maintenance intervention was designed as a low-input approach, however weight regain was significant and weight maintenance strategies require further development
Gravito-electromagnetic analogies
We reexamine and further develop different gravito-electromagnetic (GEM)
analogies found in the literature, and clarify the connection between them.
Special emphasis is placed in two exact physical analogies: the analogy based
on inertial fields from the so-called "1+3 formalism", and the analogy based on
tidal tensors. Both are reformulated, extended and generalized. We write in
both formalisms the Maxwell and the full exact Einstein field equations with
sources, plus the algebraic Bianchi identities, which are cast as the
source-free equations for the gravitational field. New results within each
approach are unveiled. The well known analogy between linearized gravity and
electromagnetism in Lorentz frames is obtained as a limiting case of the exact
ones. The formal analogies between the Maxwell and Weyl tensors are also
discussed, and, together with insight from the other approaches, used to
physically interpret gravitational radiation. The precise conditions under
which a similarity between gravity and electromagnetism occurs are discussed,
and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some
re-write, notation improvements and a new figure that match the published
version; expanded compared to the published version to include Secs. 2.3 and
Informatively missing quality of life and unmet needs sex data for immigrant and Anglo-Australian cancer patients and survivors
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al
Emergence of scale-free leadership structure in social recommender systems
The study of the organization of social networks is important for
understanding of opinion formation, rumor spreading, and the emergence of
trends and fashion. This paper reports empirical analysis of networks extracted
from four leading sites with social functionality (Delicious, Flickr, Twitter
and YouTube) and shows that they all display a scale-free leadership structure.
To reproduce this feature, we propose an adaptive network model driven by
social recommending. Artificial agent-based simulations of this model highlight
a "good get richer" mechanism where users with broad interests and good
judgments are likely to become popular leaders for the others. Simulations also
indicate that the studied social recommendation mechanism can gradually improve
the user experience by adapting to tastes of its users. Finally we outline
implications for real online resource-sharing systems
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
- …
