10 research outputs found

    Toward precision medicine of breast cancer

    Full text link

    Search for B → μ μ And B0 → μ+ μ- Decays

    Get PDF
    A search for the rare decays B → μ μ and B → μ μ is performed in pp collisions at ps = 7TeV, with a data sample corresponding to an integrated luminosity of 5 fb collected by the CMS experiment at the LHC. In both decays, the number of events observed after all selection requirements is consistent with the expectation from background plus standard model signal predictions. The resulting upper limits on the branching fractions are B(B → μ μ-) < 7:7 × 10 and B(B → μ μ ) < 1:8 × 10 at 95% confidence level

    Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2

    No full text
    Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson’s disease. We employed a novel, parallel, compound-centric approach to identify a potent and selective LRRK2 inhibitor LRRK2-IN-1, and demonstrated that inhibition of LRRK2 induces dephosphorylation of Ser910/Ser935 and accumulation of LRRK2 within aggregate structures. LRRK2-IN-1 will serve as a versatile tool to pharmacologically interrogate LRRK2 biology and study its role in Parkinson’s disease

    Triple-negative breast cancer: investigating potential molecular therapeutic target

    No full text
    Introduction: Triple-negative breast cancer (TNBC) makes up about 10 - 20% of all breast cancers and the lack of hormone receptors and human epidermal growth factor receptor-2/Neu expression is responsible for poor prognosis, no targeted therapies and trouble in the clinical management. Tumor heterogeneity, also within the same tumor, is a major cause for this difficulty. Based on the introduction of new biological drugs against different kinds of tumor, many efforts have been made for classification of genetic alterations present in TNBC, leading to the identification of several oncogenes and tumor suppressor genes involved in breast cancer carcinogenesis. Areas covered: In this review we investigated the molecular alteration present in TNBC which could lead to the creation of new targeted therapies in the future, with the aim to counteract this disease in the most effective way. Expert opinion: In this context some hormone receptors like G-proteincoupled receptor 30 and androgen receptors may be a fascinating area to investigate; also, angiogenesis, represented not only by the classical VEGF/VEGFR relationship, but also by other molecules, like semaphorins, fibroblast growth factor and heparin-binding-EGF-like, is a mechanism in which new developments are expected. In this perspective, one technique that may show promise is the gene therapy; in particular the gene transfer could correct abnormal genetic function in cancer cells

    Antibody Biosynthesis

    No full text

    Respiratory Tract and Mediastinum

    No full text

    Pharmacokinetics–pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients

    No full text

    Triple-negative breast cancer: investigating potential molecular therapeutic target

    No full text
    corecore