9 research outputs found

    Patient factors influencing acute gluten reactions and cytokine release in treated coeliac disease.

    Get PDF
    BACKGROUND: Patients with coeliac disease (CD) commonly report a variety of adverse symptoms to gluten, but descriptions of the symptomatic response in the literature may have been confounded by the presence of food components such as fermentable carbohydrates (FODMAPs) causing symptoms of irritable bowel syndrome independent of gluten. In recent unmasked and masked low FODMAP gluten challenge studies in small groups of treated CD patients, nausea and vomiting were shown to be the key symptoms associated with serum interleukin (IL)-2 release. Our objective was to utilise a large and diverse cohort of people with CD undertaking a standardised gluten food challenge to characterise the demographic, genetic and clinical factors influencing the severity and timing of acute gluten reactions and IL-2 production. METHODS: A total of 295 adults treated for CD were observed for 6 h after an unmasked food challenge consisting of 10 g vital wheat gluten (low in FODMAPs) in 100 ml water. Assessments included patient-reported outcomes, serum IL-2 and adverse events. Responses were analysed according to patient characteristics, HLA-DQ genotype, duodenal histology and response to a second gluten challenge. RESULTS: Peak symptom severity was at 3 h (median severity 5/10). Peak IL-2 was at 4 h (median 4 pg/ml, range undetectable to 1028 pg/ml). Older age, older age at diagnosis, HLA-DQ2.5 positivity and homozygosity for HLA-DQB1*02 were each significantly associated with IL-2 elevations after gluten. Patients positive for HLA-DQ2.5, DQ8, DQ2.2 or DQ7 showed elevated IL-2 after gluten. Patient factors were not significantly associated with severity of digestive symptoms, but symptoms were correlated to one another and serum IL-2. Gluten challenge after 5 months caused more vomiting and higher IL-2 levels, but responses correlated with the first. CONCLUSIONS: Gluten-induced symptoms and cytokine release is common in adults with treated CD. Age, genetics and previous response to gluten predict these acute reactions to gluten challenge. Structured symptom assessment and serum IL-2 after standardised gluten challenge may inform on patient diagnosis, the role of gluten in symptomatology and the need for adjunctive treatment. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03644069 Registered 21 May 2018

    Epitope-Specific Immunotherapy Targeting CD4-Positive T Cells in Celiac Disease: Safety, Pharmacokinetics, and Effects on Intestinal Histology and Plasma Cytokines with Escalating Dose Regimens of Nexvax2 in a Randomized, Double-Blind, Placebo-Controlled Phase 1 Study

    No full text
    Background: Nexvax2® is a novel, peptide-based, epitope-specific immunotherapy intended to be administered by regular injections at dose levels that increase the threshold for clinical reactivity to natural exposure to gluten and ultimately restore tolerance to gluten in patients with celiac disease. Celiac disease patients administered fixed intradermal doses of Nexvax2 become unresponsive to the HLA-DQ2·5-restricted gluten epitopes in Nexvax2, but gastrointestinal symptoms and cytokine release mimicking gluten exposure, that accompany the first dose, limit the maximum tolerated dose to 150. μg. Our aim was to test whether stepwise dose escalation attenuated the first dose effect of Nexvax2 in celiac disease patients. Methods: We conducted a randomized, double-blind, placebo-controlled trial at four community sites in Australia (3) and New Zealand (1) in HLA-DQ2·5 genotype positive adults with celiac disease who were on a gluten-free diet. Participants were assigned to cohort 1 if they were HLA-DQ2·5 homozygotes; other participants were assigned to cohort 2, or to cohort 3 subsequent to completion of cohort 2. Manual central randomization without blocking was used to assign treatment for each cohort. Initially, Nexvax2-treated participants in cohorts 1 and 2 received an intradermal dose of 30. μg (consisting of 10. μg of each constituent peptide), followed by 60. μg, 90. μg, 150. μg, and then eight doses of 300. μg over six weeks, but this was amended to include doses of 3. μg and 9. μg and extended over a total of seven weeks. Nexvax2-treated participants in cohort 3 received doses of 3. μg, 9. μg, 30. μg, 60. μg, 90. μg, 150. μg, 300. μg, 450. μg, 600. μg, 750. μg, and then eight of 900. μg over nine weeks. The dose interval was 3 or 4. days. Participants, care providers, data managers, sponsor personnel, and study site personnel were blinded to treatment assignment. The primary outcome was the number of adverse events and percentage of participants with adverse events during the treatment period. This completed trial is registered with ClinicalTrials.gov, number NCT02528799. Findings: From the 73 participants who we screened from 19 August 2015 to 31 October 2016, 24 did not meet eligibility criteria, and 36 were ultimately randomized and received study drug. For cohort 1, seven participants received Nexvax2 (two with the starting dose of 30. μg and then five at 3. μg) and three received placebo. For cohort 2, 10 participants received Nexvax2 (four with starting dose of 30. μg and then six at 3. μg) and four received placebo. For cohort 3, 10 participants received Nexvax2 and two received placebo. All 36 participants were included in safety and immune analyses, and 33 participants completed treatment and follow-up; in cohort 3, 11 participants were assessed and included in pharmacokinetics and duodenal histology analyses. Whereas the maximum dose of Nexvax2 had previously been limited by adverse events and cytokine release, no such effect was observed when dosing escalated from 3. μg up to 300. μg in HLA-DQ2·5 homozygotes or to 900. μg in HLA-DQ2.5 non-homozygotes. Adverse events with Nexvax2 treatment were less common in cohorts 1 and 2 with the starting dose of 3. μg (72 for 11 participants) than with the starting dose of 30. μg (91 for six participants). Adverse events during the treatment period in placebo-treated participants (46 for nine participants) were similar to those in Nexvax2-treated participants when the starting dose was 3. μg in cohort 1 (16 for five participants), cohort 2 (56 for six participants), and cohort 3 (44 for 10 participants). Two participants in cohort 2 and one in cohort 3 who received Nexvax2 starting at 3. μg did not report any adverse event, while the other 33 participants experienced at least one adverse event. One participant, who was in cohort 1, withdrew from the study due to adverse events, which included abdominal pain graded moderate or severe and associated with nausea after receiving the starting dose of 30. μg and one 60. μg dose. The most common treatment-emergent adverse events in the Nexvax2 participants were headache (52%), diarrhoea (48%), nausea (37%), abdominal pain (26%), and abdominal discomfort (19%). Administration of Nexvax2 at dose levels from 150. μg to 900. μg preceded by dose escalation was not associated with elevations in plasma cytokines at 4. h. Nexvax2 treatment was associated with trends towards improved duodenal histology. Plasma concentrations of Nexvax2 peptides were dose-dependent. Interpretation: We show that antigenic peptides recognized by CD4-positive T cells in an autoimmune disease can be safely administered to patients at high maintenance dose levels without immune activation if preceded by gradual dose escalation. These findings facilitate efficacy studies that test high-dose epitope-specific immunotherapy in celiac disease

    Cytokine release after gluten ingestion differentiates coeliac disease from self-reported gluten sensitivity

    No full text
    Diagnosing coeliac disease (CD) in patients on a gluten-free diet (GFD) is difficult. Ingesting gluten elevates circulating interleukin (IL)-2, IL-8 and IL-10 in CD patients on a GFD. We tested whether cytokine release after gluten ingestion differentiates patients with CD from those with self-reported gluten sensitivity (SR-GS). Australian patients with CD ( n = 26) and SR-GS ( n = 18) on a GFD consumed bread (estimated gluten 6 g). Serum at baseline and at 3 and 4 h was tested for IL-2, IL-8 and IL-10. Separately, Norwegian SR-GS patients ( n = 49) had plasma cytokine assessment at baseline and at 2, 4 and 6 h after food bars containing gluten (5.7 g), fructan or placebo in a previous double-blind crossover study. Gluten significantly elevated serum IL-2, IL-8 and IL-10 at 3 and 4 h in patients with CD but not SR-GS. The highest median fold-change from baseline at 4 h was for IL-2 (8.06, IQR: 1.52–24.0; P < 0.0001, Wilcoxon test). The two SR-GS cohorts included only one (1.5%) confirmed IL-2 responder, and cytokine responses to fructan and placebo were no different to gluten. Overall, cytokine release after gluten was present in 22 (85%) CD participants, but 2 of the 4 non-responders remained clinically well after 1 y on an unrestricted diet. Hence, cytokine release occurred in 22 (92%) of 24 ‘verified’ CD participants. Gluten challenge with high-sensitivity cytokine assessment differentiates CD from SR-GS in patients on a GFD and identifies patients likely to tolerate gluten reintroduction. Systemic cytokine release indicating early immune activation by gluten in CD individuals cannot be detected in SR-GS individuals

    Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease

    Get PDF
    Celiac disease (CeD), caused by immune reactions to cereal gluten, is treated with gluten -elimination diets. Within hours of gluten exposure, either perorally or extraorally by intradermal injection, treated patients experience gastrointestinal symptoms. To test whether gluten exposure leads to systemic cytokine production time -related to symptoms, series of multiplex cytokine measurements were obtained in CeD patients after gluten challenge. Peptide injection elevated at least 15 plasma cytokines, with IL-2, IL-8, and IL-10 being most prominent (fold-change increase at 4 hours of 272, 11, and 1.2, respectively). IL-2 and IL-8 were the only cytokines elevated at 2 hours, preceding onset of symptoms. After gluten ingestion, IL-2 was the earliest and most prominent cytokine (15-fold change at 4 hours). Supported by studies of patient-derived gluten-specific T cell clones and primary lymphocytes, our observations indicate that gluten-specific CD4+ T cells are rapidly reactivated by antigen -exposure likely causing CeD-associated gastrointestinal symptoms

    Masked bolus gluten challenge low in FODMAPs implicates nausea and vomiting as key symptoms associated with immune activation in treated coeliac disease

    No full text
    Background In patients with coeliac disease, FODMAPs in gluten-containing foods, and participant anticipation of a harmful ('nocebo') effect, may contribute to acute symptoms after gluten challenge. Aim To establish acute gluten-specific symptoms linked to immune activation in coeliac disease Methods We included 36 coeliac disease patients on a gluten-free diet receiving placebo in the RESET CeD trial. Double-blind, bolus vital wheat gluten (similar to 6-g gluten protein) and sham challenges low in FODMAPs were consumed 2 weeks apart. Assessments included daily Coeliac Disease Patient Reported Outcome (CeD PRO) symptom scores (0-10), adverse events and serum interleukin-2 (baseline and 4 hours). Results Median CeD PRO score for nausea increased most (sham: 0 vs gluten: 5.5; P < .001). Apart from tiredness (1 vs 4, P = .005) and headache (0 vs 2, P = .002), changes in other symptoms were small or absent. Only nausea increased significantly in occurrence with gluten (11% vs 69%, P < .001). Without nausea, only tiredness and flatulence were common after gluten. Nausea (6% vs 61%, P < .001; median onset: 1:34 hours) and vomiting (0% vs 44%, P < .001; 1:51 hours) were the only adverse events more common with gluten than sham. Interleukin-2 was always below the level of quantitation (0.5 pg/mL) at baseline, and after sham. Interleukin-2 was elevated after gluten in 97% of patients (median fold-change: 20), and correlated with severity of nausea (r(s) = .49, P = .0025) and occurrence of vomiting (P = .0005). Conclusions Nausea and vomiting are relatively specific indicators of acute gluten ingestion, and correlate with immune activation. IBS-like symptoms without nausea are unlikely to indicate recent gluten exposure

    Epitope Specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies

    No full text
    Background A gluten-free diet is the only means to manage coeliac disease, a permanent immune intolerance to gluten. We developed a therapeutic vaccine, Nexvax2, designed to treat coeliac disease. Nexvax2 is an adjuvant-free mix of three peptides that include immunodominant epitopes for gluten-specific CD4-positive T cells. The vaccine is intended to engage and render gluten-specific CD4-positive T cells unresponsive to further antigenic stimulation. We assessed the safety and pharmacodynamics of the vaccine in patients with coeliac disease on a gluten-free diet. Methods We did two randomised, double-blind, placebo-controlled, phase 1 studies at 12 community sites in Australia, New Zealand, and the USA, in HLA-DQ2·5-positive patients aged 18–70 years who had coeliac disease and were on a gluten-free diet. In the screening period for ascending dose cohorts, participants were randomly assigned (1:1) by central randomisation with a simple block method to a double-blind crossover, placebo-controlled oral gluten challenge. Participants with a negative interferon γ release assay to Nexvax2 peptides after the screening oral gluten challenge were discontinued before dosing. For the biopsy cohorts, the screening period included an endoscopy, and participants with duodenal histology who had a Marsh score of greater than 1 were discontinued before dosing. Participants were subsequently randomly assigned to either Nexvax2 or placebo in ascending dose cohorts (2:1) and in biopsy cohorts (1:1) by central randomisation with a simple block method. In the three-dose study, participants received either Nexvax2 60 μg, 90 μg, or 150 μg weekly, or placebo over 15 days; in a fourth biopsy cohort, patients received either Nexvax2 at the maximum tolerated dose (MTD) or placebo. In the 16-dose study, participants received Nexvax2 150 μg or 300 μg or placebo twice weekly over 53 days; in a third biopsy cohort, patients also received either Nexvax2 at the MTD or placebo. In the 4-week post-treatment period, ascending dose cohorts underwent a further double-blind crossover, placebo-controlled oral gluten challenge, which had a fixed sequence, and biopsy cohorts had a gastroscopy with duodenal biopsies and quantitative histology within 2 weeks without oral gluten challenge. Participants, investigators, and study staff were masked to the treatment assignment, except for the study pharmacist. The primary endpoint was the number and percentage of adverse events in the treatment period in an intention-to-treat analysis. Both trials were completed and closed before data analysis. Trials were registered with the Australian New Zealand Clinical Trials Registry, numbers ACTRN12612000355875 and ACTRN12613001331729. Findings Participants were enrolled from Nov 28, 2012, to Aug 14, 2014, in the three-dose study, and from Aug 3, 2012, to Sept 10, 2013, in the 16-dose study. Overall, 62 (57%) of 108 participants were randomly assigned after oral gluten challenge and 20 (71%) of 28 participants were randomly assigned after endoscopy. In the three-dose study, nine participants were randomly allocated to Nexvax2 60 μg and three to placebo (first cohort), nine were allocated to Nexvax2 90 μg and four to placebo (second cohort), eight were allocated to Nexvax2 150 μg and four to placebo (third cohort), and three were allocated to Nexvax2 150 μg and three to placebo (biopsy cohort). In the 16-dose study, eight participants were randomly allocated to Nexvax2 150 μg and four to placebo (first cohort), ten were allocated to Nexvax2 300 μg and three to placebo (second cohort), and seven were allocated to Nexvax2 150 μg and seven to placebo (biopsy cohort). The MTD for Nexvax2 was 150 μg because of transient, acute gastrointestinal adverse events with onset 2–5 h after initial doses of the vaccine, similar to those caused by gluten ingestion. In the ascending dose cohorts in the three-dose study, six (55%) of 11 placebo recipients, five (56%) of nine who received Nexvax2 60 μg, seven (78%) of nine who received Nexvax2 90 μg, and five (63%) of eight who received Nexvax2 150 μg had at least one treatment-emergent adverse event, as did all three (100%) placebo recipients and one (33%) of three Nexvax2 150 μg recipients in the biopsy cohort. In the ascending dose cohorts of the 16-dose study, five (71%) of seven placebo-treated participants, six (75%) of eight who received Nexvax2 150 μg, and all ten (100%) who received Nexvax2 300 μg had at least one treatment-emergent adverse event, as did six (86%) of seven placebo recipients and five (71%) of seven Nexvax2 150 μg recipients in the biopsy cohort. Vomiting, nausea, and headache were the only treatment-emergent adverse events that occurred in at least 5% of participants in either study. Among participants given the MTD, eight gastrointestinal treatment-emergent adverse events occurred in four (50%) of eight participants in the third cohort and none (0%) of three participants in the biopsy cohort in the three-dose study, and five events occurred in five (63%) of eight participants in the first cohort and three events in two (29%) of seven participants in the biopsy cohort of the 16-dose study. Median villous height to crypt depth ratio in distal duodenal biopsies was not significantly different between those who received the vaccine at the MTD on either schedule and those who received placebo. Of the participants who completed the post-treatment oral gluten challenge per protocol, interferon γ release assay to Nexvax2 peptides was negative (responders to treatment) in two (22%) of nine placebo-treated participants in the three-dose study versus two (33%) of six who received Nexvax2 60 μg, five (63%) of eight who received Nexvax2 90 μg, and six (100%) of six who received Nexvax2 150 μg (p=0·007); in the 16-dose study, none (0%) of five placebo-treated participants had a negative assay versus six (75%) of eight who received Nexvax2 150 μg (p=0·021). Interpretation The MTD of Nexvax2 was 150 μg for twice weekly intradermal administration over 8 weeks, which modified immune responsiveness to Nexvax2 peptides without deterioration in duodenal histology. The gastrointestinal symptoms that followed the first intradermal administration of the vaccine resembled those associated with oral gluten challenge. These findings support continued clinical development of this potential therapeutic vaccine for coeliac disease. Funding ImmusanT
    corecore