20,593 research outputs found

    On the quantum probability flux through surfaces

    Full text link
    We remark that the often ignored quantum probability current is fundamental for a genuine understanding of scattering phenomena and, in particular, for the statistics of the time and position of the first exit of a quantum particle from a given region, which may be simply expressed in terms of the current. This simple formula for these statistics does not appear as such in the literature. It is proposed that the formula, which is very different from the usual quantum mechanical measurement formulas, be verified experimentally. A full understanding of the quantum current and the associated formula is provided by Bohmian mechanics.Comment: 15 pages, 3 figures, revised and more detailed version, to be published in Journal of Statistical Physics, August 9

    Are All Particles Identical?

    Full text link
    We consider the possibility that all particles in the world are fundamentally identical, i.e., belong to the same species. Different masses, charges, spins, flavors, or colors then merely correspond to different quantum states of the same particle, just as spin-up and spin-down do. The implications of this viewpoint can be best appreciated within Bohmian mechanics, a precise formulation of quantum mechanics with particle trajectories. The implementation of this viewpoint in such a theory leads to trajectories different from those of the usual formulation, and thus to a version of Bohmian mechanics that is inequivalent to, though arguably empirically indistinguishable from, the usual one. The mathematical core of this viewpoint is however rather independent of the detailed dynamical scheme Bohmian mechanics provides, and it amounts to the assertion that the configuration space for N particles, even N ``distinguishable particles,'' is the set of all N-point subsets of physical 3-space.Comment: 12 pages LaTeX, no figure

    Bell-Type Quantum Field Theories

    Full text link
    In [Phys. Rep. 137, 49 (1986)] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Psi|^2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to "second quantization." As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field.Comment: 53 pages LaTeX, no figure

    Synthetic aperture radar target simulator

    Get PDF
    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal

    Rotorcraft contingency power study

    Get PDF
    Twin helicopter engines are often sized by the power requirement of a safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 Contingency Power rating, permitting an engine size reduction. The merits of water injection, turbine cooling airflow modulation, throttle push, and a propellant auxiliary power plant were evaluated using military Life Cycle Cost (LCC) and commercial helicopter Direct Operating Cost (DOC) merit factors in a rubber engine and a rubber aircraft scenario

    AlGaAs heterojunction lasers

    Get PDF
    The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures

    Topological defects, pattern evolution, and hysteresis in thin magnetic films

    Get PDF
    Nature of the magnetic hysteresis for thin films is studied by the Monte-Carlo simulations. It is shown that a reconstruction of the magnetization pattern with external field occurs via the creation of vortex-antivortex pairs of a special kind at the boundaries of stripe domains. It is demonstrated that the symmetry of order parameter is of primary importance for this problem, in particular, the in-plane magnetic anisotropy is necessary for the hysteresis.Comment: Accepted to EPL; 7 pages, 3 color figure

    Deriving relativistic momentum and energy. II. Three-dimensional case

    Full text link
    We generalise a recent derivation of the relativistic expressions for momentum and kinetic energy from the one-dimensional to the three-dimensional case.Comment: 7 page
    corecore