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Topological defects, pattern  evolution, and hysteresis in 
th in  m agnetic films
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PACS. 7 5 .6 0 .C h  -  Domain walls and domain structure.
PACS. 7 5 . 6 0 . E j  -  Magnetization curves, hysteresis, Barkhausen and related effects. 
PACS. 7 5 .7 0 .A k  -  Magnetic properties of monolayers and thin films.

A bstract. -  Nature of the magnetic hysteresis for thin films is studied by the Monte-Carlo 
simulations. It is shown that a reconstruction of the magnetization pattern with external field 
occurs via the creation of vortex-antivortex pairs of a special kind at the boundaries of stripe 
domains. It is demonstrated that the symmetry of order parameter is of primary importance 
for this problem, in particular, the in-plane magnetic anisotropy is necessary for the hysteresis.

Introduction. -  Traditional views assume th a t under the thermodynamic equilibrium 
conditions a system should either be homogeneous or consist of macroscopically large domains 
of homogeneous phases. It appears, however, tha t equilibrium or very long-lived metastable 
states occur frequently with a mesoscale heterogeneity (modulated phases, patterns, etc.; 
for a general review see, e.g., Ref. [1]). These inhomogeneous states may be either regular 
(e.g., stripes, stripe domains) or “chaotic” . The stripes in high-temperature superconductors 
and doped Mott insulators [2,3], supramolecular self-assembly in organic chemistry [4], and 
“heterogeneous fluctuations” in metallic alloys [5] should be mentioned in this context. Stripe 
magnetic domain state of thin ferromagnetic films [6] under certain conditions turns out to 
be unstable with respect to the formation of complicated two-dimensional “chaotic” pattern 
[7-9], which provides another example of the mesoscale pattern  evolution, interesting not only 
conceptually but also for the applications related to the information storage.

It is commonly accepted now tha t the formation of the mesoscale heterogeneity is a result 
of frustrations in the system which can result from either geometric factors [5, 10, 11] or 
competing interactions, the long-ranged forces such as Coulomb or dipole-dipole interactions 
being of primary importance [3,7,12-14]. General concepts of “avoided criticality” [12,13] 
and “self-induced glassiness” [14] have been proposed to trea t this situation. However, we 
still have no detailed theory to describe a formation of heterogeneous mesoscale states in 
frustrated systems. In particular, there is no satisfactory description of the experimentally 
observed [8,9] “chaotization” of the magnetic stripe domains beyond the oversimplified Ising 
model; for the latter, several Monte-Carlo [15,16] or phase-field [17] simulations have been
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carried out. However, the vector character of the order param eter is of crucial importance for 
the magnetism.

In particular, the key issues for the applications such as the pattern  evolution with the 
in-plane magnetic field variation and the magnetic hysteresis cannot be formulated in the 
framework of the Ising model. These questions are investigated in the present work.

Stripe domain formation is the result of an interplay of magnetostatic energy, energy of 
domain walls, and easy-axis magnetic anisotropy [6]. For the case of magnetic multilayers, 
the latter comes mainly from the layer interfaces. Easy magnetization axis normal to the film 
plane xy appears [9]. Further we will argue tha t the in-plane anisotropy is also crucial for 
the magnetic behavior of the films. To demonstrate this we consider two limiting cases, that 
are the model with the two-component magnetization vector lying in the yz-plane and the 
three-component (Heisenberg) case without any xy-anisotropy.

Model and simulation results. -  We start with the following effective Hamiltonian for the 
system under consideration:

X  = f ( f  (i^ ) 2 + 3- f  ( w ) 2 -  f m * -  hmv)  d2r + W

+ ¥  ƒ ƒ m*(r) - v/d2+(1r_r,)2 ) mz{Y')d2rd2r'

Here m  is the magnetization unit vector having either two or three components, h is an 
external field, Jx , Jy, K  are exchange and anisotropy parameters, and the last term  describes 
the long-range dipole-dipole interaction [7] (Q is the effective magnetic charge density and d 
is the film thickness). Note tha t stripes appear only if the exchange interaction is anisotropic; 
a checkerboard-like structure arises for J x =  J y [9]. W ith our choice of parameters, stripes 
are formed along y-axis, th a t is parallel to the external field. The domain structure arises 
for not too strong external fields since at h ^  to  the magnetization vector is just parallel to 
the y-axis. We will consider the case of a regular stripe domain structure is stable at zero 
external field (which is observed, e.g., for the permalloy-cobalt multilayers in Ref. [9]). In 
these experiments an instability of the stripe domain structure with the external field increase 
has been observed, which can be described in terms of the appearance of disclinations at the 
domain wall lines [8,18]; further a two-dimensional “chaotic” magnetization pattern  is formed.

In our Metropolis Monte Carlo [19] simulations, a discrete-lattice (300 by 300 sites) analo
gous to the effective Hamiltonian (1) is studied, in particular, the exchange terms are approx
imated by appropriate nearest-neighbor interactions. We present here the data  for the system 
with J x =  2, J y =  4, K  =  4, Q2 =  0.1 and d = 1 0  obtained at several values of the tem pera
ture. The parameters are chosen to produce the stripe domains with a width A of about 10 
lattice periods. In each simulation, we start with a large (saturating) negative external field 
and slowly varied it to a large positive value and then back.

Figure 1 shows the magnetization curves M y(h) for several values of tem perature for the 
two-component (yz) magnetization. Well-pronounced hysteresis loops are clearly seen. To 
reveal the source of the hysteresis, we display snapshots of the system at several points of the 
hysteresis loop (Figure 2). Inside the stripe domains, the magnetization is oriented almost 
perpendicular to the film plane, so tha t m z =  1 and m z =  -1 .  These areas are drawn by red 
and light-blue colors, respectively. At a domain wall, the magnetization has to pass through 
the points where m y =  —1 or m y =  1. These points are shown by and dark-blue and yellow- 
green colors. Mixtures or the appropriate colors is used for intermediate orientations of the 
magnetization.
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Fig. 1 -  Magnetization curves for the system with two-component magnetization. Red, black and 
blue loops correspond to the temperature values 1/,3 =  0.5,1 and 2, respectively; other parameters 
are given in the text. Arrows indicate the critical field, h, corresponding to the nucleation of the 
vortex-antivortex pairs. The inset shows these values of h, whereas the line in the inset shows the 
estimation (3) with In = 13

V '  t QCT

At zero field, the magnetization rotates through the negative m y-direction for all domain 
walls. At a certain positive h, “green” parts of the domain walls with positive m y arise. 
Further increase of the external field results in a sudden flip of all domain walls to positive 
m y. One can see th a t the magnetization vector rotates over 2n angle at the motion along a 
closed loop containing the end point of the “green” part. Thus, the magnetization flip regions 
of the domain walls are term inated by vortex-antivortex pairs. It should be stressed th a t here 
both the vortex and antivortex always locate at the same linear domain wall contrary to the 
Kosterlitz-Thouless situation [20] where the vortices can travel in the entire plane.

Similar computations have been performed for the case of three-component magnetization 
(Heisenberg ferromagnet with dipole-dipole interactions). The system has a similar stripe 
domain structure. However, in the very contrast to the two-component case, no hysteresis is 
observed within the errorbar of calculation, as Figure 3 shows.

Physical picture. -  Let us first discuss the source of hysteresis for the two-component 
magnetization. Consider the energy balance of a single vortex-antivortex pair starting with 
the case h =  0. First of all, creation of the vortex itself requires a finite energy. Near the 
vortex singularity, energy is mainly contributed by the exchange (gradient) terms in Eq.(1), 
similarly to XY-model [20]. The size of this area can be estimated as a smaller value from the 
vortex-antivortex distance I and domain wall thickness a = \J  Jx/ K . A standard estimation 
with the logarithmic accuracy similar to Ref. [20] results in the expression for the energy of 
pair at h =  0:

E(l  < a) = 2 JxJy In (l / r ) , (2)

E(l  > a) = 271^/JxJy In (a/r)

Here the short-range cutoff of order of the lattice constant, r0, is introduced.
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Fig. 2 -  Snapshots of the stripe-domain system with the two-component order parameter at several 
points of the hysteresis loop for 0  =  1. Magnetic field is h =  0, h =  0.3, and h =  0.6, from top to 
bottom shot. The inset shows the color legend for the orientation of local magnetization.



P .  A . PRUDKOYSKII, A . N . R u b t s o v  AND M . I. KATSNELSON: T O PO LO G IC A L  D EFEC TS, PATTERN EVOLUTION, AND HYSTERESIS IN TI

h

Fig. 3 -  Magnetization curve for the case of tree-component magnetization at temperature 1/,3 =  1. 
All the parameters are the same as for 1/,3 = 1  magnetization curve in Figure 1.

The existence of hysteresis means that the value of E(l > a) is large enough in comparison 
with the temperature, otherwise thermal fluctuations should destroy oriented domain walls. 
The external field makes the wall flip energetically favorable and decreases the barrier between 
the the flipped and unflipped wall. Let us estimate the height of this barrier. We will 
discuss the lower part of the magnetization curve, so that positive h tends to flip the domains. 
Consider the term - h m y as a perturbation. The zero-order approximation for m (r) can 
be constructed explicitly for l ^  a, because depolarization effects and the anisotropy term 
in (1) can be neglected in this case. The first-order correction to E(l  ^  a) appears to be 
h m y c P r )h_0 =  — i t In 2 y /rJ^Jyl2h. For large /, this correction is obviously proportional to 
l, that is E(l  ^  a) <x - l h / a .  One can see that the function E(l) at non-zero positive h has a 
maximum at l ^  a or l ~  a. Use the limit of small l for the logarithmic-accuracy estimation. 
We obtain that the maximum of E(l) take place at l ^ ax oc Jx/ h  and E (lmax) ~  tt\ /  Jx Jy In -feg. 
There is a noticeable probability of the vortex-antivortex pair nucleation at the domain wall 
interval of the length L  during the time T,  if e~/3E(lma!C'> «  where short-time cut-off to 
is the shortest relaxation time of the system [21]. Therefore we estimate that the vortex- 
antivortex pairs arise at

7 /  In ^  \
h oc exp ( -------- toa ) . (3)

It is worthwhile to note at this point that, strictly speaking, the applicability of the Monte 
Carlo scheme is proven only for the thermodynamic equilibrium case. However, it is clear 
that for the situation of several well-separated local minima, individual properties of those 
metastable states are also described correctly. The transition through energy barrier between 
the minima in the Metropolis Monte Carlo simulation is in fact a diffusion process with a typ
ical timescale t 0 of about a single Monte Carlo sweep, therefore in our numerical calculations 
In «  10 4- 15. The obtained dependence agrees well with the numerical data, as the inset 
in Fig. 1 shows.

Possible effects of interaction between domain walls should be taken into account. To 
determine this interaction, it is sufficient to consider only the structure which is homogeneous
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in the y-direction. One should note first that the domain wall flip does not affect the dipole
dipole interaction term since this flip does not change z-component of the internal magnetic 
field. Therefore we can ignore the last term in Eq.(1) in our estimation. At zero external field, 
Eq.(1) reads

J  — 2  s n̂2 = m *n ’ (4)

where the phase $ describing the orientation of two-component magnetization is introduced: 
m  =  (sin $, 0, cos $). This is equivalent to the minimal action condition for a pendulum, 
if x  acts as a time [22]. Qualitatively, the domain wall corresponds to a potential energy 
minimum of the pendulum $ =  0, ± n , ..., whereas domains themselves are described by the
near-separatrix motion $ «  ± n /2 ,  ± 3 n / 2 , ....  Domains with parallel and antiparallel walls
are described by the conditions $(0) =  0, $(A) =  0 and $(0) =  0, $(A) =  n, respectively. 
The difference between the values of the action for these two trajectories gives an effective 
interaction energy of domain walls. For the case of A /a  ^  1, the parallel wall configuration 
is energetically favorable, but the energy gain is exponentially small with a factor of e-A /a . 
In our simulations as well as in the experiment [9] A /a  «  7 ^  10, and this exponentially small 
term can be neglected. It would be interesting to realize experimentally a system with A «  a, 
where the interaction between domain walls would be important.

In the case of the Heisenberg model (three-dimensional vector order parameter without xy  
anisotropy), the vortices and antivortices will not arise since the orientations of domain walls 
can be changed without a transition over an energy barrier. For example, for the domain 
profile passing from m z = 1 to m z = — 1 orientation via «/-direction, one can consider the 180° 
rotation of m  in the xy-plane. The magnetization distribution m x = sin4>\/l — to2, m y = 
cos — to2 interpolates smoothly between the domain walls passed through -\-y and —y 
($ =  0 and $ =  n) with the energy independent on $, as one can see from Eq.(1). In 
agreement with these simple topological considerations, our numerical simulations do not 
show any hysteresis effects for the Heisenberg case. This demonstrates the relevance of in-plane 
magnetic anisotropy for the hysteresis in magnetic films and multilayers. This anisotropy can 
suppress a continuous rotation of the magnetization vector and therefore result in a hysteresis 
behavior.

We investigate here a simplified model of the stripe-domain formation; in the conclusion, 
we discuss its relation with real experimental situation. Although the Hamiltonian (1) is 
frequently used to describe the stripe domains [7], it may by a concern that the dipole-dipole 
interactions due to the in-plane magnetization components are neglected in this approach. 
Indeed, the effective density of magnetic charges is — Q div m, and only the surface charges 
due to the discontinuity of the normal component of m  at the film boundary are taken into

d dmaccount in Eq.( l) . The bulk charge density is proportional to which is zero inside
the domains but not in the domain walls. Physically, the in-plane dipole moment of the domain 
wall may occur. The detailed study of these effects is out of the scope of the paper; let us 
only justify why they can be neglected in the cases under consideration. First of all, the bulk 
magnetic charges do not appear for the two-component order parameter since m x is absent and 
m y is independent of y. For the three-component order parameter, the domain wall may have 
a dipole moment of order of Qad  per unit wall length. This value should be compared with 
similar quantity of the domain, that is QAd. Therefore our consideration is valid assuming 
that a ^  A. Qualitatively, even in this case the bulk charges introduce some anisotropy in the 
xy -plane and can therefore result in hysteresis effects for the three-component magnetization, 
but these effects should be much weaker than for the two-component case.
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