2,161 research outputs found

    The molecular basis for ethnic variation and histological subtype differences in prostate cancer.

    Get PDF
    Prostate cancer is a common malignancy among men in Western countries. Recently the morbidity and mortality of prostate cancer increase dramatically in several oriental countries including China. Rapidly evolving technology in molecular biology such as high-throughput sequencing and integrative analysis of genomic and transcriptomic landscapes have enabled the identification of key oncogenic events for prostate cancer initiation, progression and resistance to hormonal therapy. These surging data of prostate cancer genome also provide insights on ethnic variation and the differences in histological subtype of this disease. In this review, differences in the incidence of prostate cancer and the prevalence of main genetic alterations between Asian and Western populations are discussed. We also review the recent findings on the mechanisms underlying neuroendocrine differentiation of prostate cancer and the development of small cell neuroendocrine carcinoma after androgen deprivation therapy

    China’s Future Nuclear Submarine Force

    Get PDF
    On 26 October 2006, a Chinese Song-class attack submarine reportedly surfaced in close proximity to the USS Kitty Hawk carrier battle group in international waters near Okinawa.1 This was not the fi rst time that Chinese sub- marines have attracted extensive media attention. The advent of the Yuan-class SSK in mid-2004 seems to have had a major impact in transforming the assess- ments of Western naval analysts, and also of the broader community of analysts studying China’s military modernization

    Chinese Mine Warfare: A PLA Navy \u27Assassin\u27s Mace\u27 Capability

    Get PDF
    After a lengthy hiatus-lasting nearly six centuries—China is reemerging as a maritime power, this time with an emphasis on undersea warfare. Between 1996 and 2006, the Chinese navy took delivery of more than thirty submarines. These vessels include two new classes of nuclear submarines-the advanced Song-class diesel submarines and the Yuan class of diesel boats which, according to some reports, was a surprise for U.S. intelligence. Above and beyond this ambitious naval construction program, the People\u27s Republic of China (PRC) received during 2005-06 an additional eight formidable Kilo-class submarines (and associated weaponry), which were purchased in 2002, to add to the four it already operated. A new nuclear submarine base on Hainan Island may well herald a new era of more extended Chinese submarine operations.https://digital-commons.usnwc.edu/cmsi-red-books/1002/thumbnail.jp

    Thermal receptivity of free convective flow from a heated vertical surface: linear waves

    Get PDF
    Numerical techniques are used to study the receptivity to small-amplitude thermal disturbances of the boundary layer flow of air which is induced by a heated vertical flat plate. The fully elliptic nonlinear, time-dependent Navier–Stokes and energy equations are first solved to determine the steady state boundary-layer flow, while a linearised version of the same code is used to determine the stability characteristics. In particular we investigate (i) the ultimate fate of a localised thermal disturbance placed in the region near the leading edge and (ii) the effect of small-scale surface temperature oscillations as means of understanding the stability characteristics of the boundary layer. We show that there is a favoured frequency of excitation for the time-periodic disturbance which maximises the local response in terms of the local rate of heat transfer. However the magnitude of the favoured frequency depends on precisely how far from the leading edge the local response is measured. We also find that the instability is advective in nature and that the response of the boundary layer consists of a starting transient which eventually leaves the computational domain, leaving behind the large-time time-periodic asymptotic state. Our detailed numerical results are compared with those obtained using parallel flow theory

    Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo.

    Get PDF
    BackgroundProstate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study.MethodsProstaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice.ResultsProstate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3-5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5-4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8-AR-PSA-) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells.ConclusionHuman prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells

    Time-reversal symmetry breaking in circuit-QED based photon lattices

    Full text link
    Breaking time-reversal symmetry is a prerequisite for accessing certain interesting many-body states such as fractional quantum Hall states. For polaritons, charge neutrality prevents magnetic fields from providing a direct symmetry breaking mechanism and similar to the situation in ultracold atomic gases, an effective magnetic field has to be synthesized. We show that in the circuit QED architecture, this can be achieved by inserting simple superconducting circuits into the resonator junctions. In the presence of such coupling elements, constant parallel magnetic and electric fields suffice to break time-reversal symmetry. We support these theoretical predictions with numerical simulations for realistic sample parameters, specify general conditions under which time-reversal is broken, and discuss the application to chiral Fock state transfer, an on-chip circulator, and tunable band structure for the Kagome lattice.Comment: minor revisions, version published in PRA; 19 pages, 13 figures, 2 table
    corecore