303 research outputs found

    Planning for Performance Augmentation of Space Shuttle

    Get PDF
    Augmented performance is necessary to assure that the full Space Shuttle payload deployment capability of 32,000 Ibs can be achieved for the 98° inclination, 150 nautical mile circular mission launched from Vandenberg AFB, Calif. The performance-augmented Space Shuttle meets all design mission requirements, and offers potential payload growth to accommodate new payloads and new concepts. Consequently, it is important to the future national space capability that performance augmentation be developed and made available to meet payload requirements which exploit the capability of the Space Shuttle. This paper presents the options under consideration which include uprating the Space Shuttle Main Engines (SSMEs) to the range of 115 percent of rated power level for nominal operations, Solid Rocket Motor (SRM) filamentwound case segments, and the Liquid Boost Module (LBM). These candidates will be studied in detail for the remainder of FY81 and FY82. Selection and initiation of development in FY83 will support the early 1987 need date

    Paper Session III-A - Human Exploration Initiative

    Get PDF
    Reliable access to space through the use of a mixed fleet of launch vehicles, including the Space Transportation System (STS) and other existing and new systems, will be needed to provide the capability to accommodate the major new initiative for the Human Exploration (HEI) Program. The operational Space Station Freedom (SSF) will be established as a transportation node for Lunar and planetary missions and will required the Shuttle-C for assembly and implementation. The proposed Lunar mission schedule beginning in 1999 will also require a heavy lift launch vehicle (HLLV) capability in the class of the Shuttle- C. The large payloads and associated quantities of propellent needed for the establishment and maintenance of Lunar and Mars outposts will require a heavy-lift launch capability not now available to the United States with existing Earth-to-orbit transportation systems,. This augmented mixed fleet of launch vehicles will require extensive expansion and modification in the vehicle and payload launch processing operations, to meet current commitments and to accomplish this bold new initiative. This paper will provide an update of the planning for the Human Exploration Initiative announced by President Bush on July 20, 1989. It will review the activity that has transpired during the period following this announcement and will discuss the various options in mission design, proposed launch vehicles and program phasing under consideration, with special emphasis on the planning for the ground processing capabilities required at the Kennedy Space Center

    A Selective Advantage for Conservative Viruses

    Full text link
    In this letter we study the full semi-conservative treatment of a model for the co-evolution of a virus and an adaptive immune system. Regions of viability are calculated for both conservatively and semi-conservatively replicating viruses interacting with a realistic semi-conservatively replicating immune system. The conservative virus is found to have a selective advantage in the form of an ability to survive in regions with a wider range of mutation rates than its semi-conservative counterpart. This may help explain the existence of a rich range of viruses with conservatively replicating genomes, a trait which is found nowhere else in nature.Comment: 4 pages, 2 figure

    Rheology of water and ammonia-water ices

    Get PDF
    Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates

    Low-Temperature Plasticity in Olivine: Grain Size, Strain Hardening, and the Strength of the Lithosphere

    Get PDF
    Plastic deformation of olivine at relatively low temperatures (i.e., low-temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low-temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation-DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low-temperature plasticity is the dominant deformation mechanism, fine-grained samples are stronger at yield than coarse-grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long-range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere.Support for this research was provided by Natural Environment Research Council (NERC) grant NE/M000966/1 and NSF Division of Earth Sciences grants 1255620, 1464714, and 1550112. D.E.J.A. acknowledges funding from the Royal Academy of Engineering through a research fellowship

    Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures

    Get PDF
    Synthetic polycrystalline ice was sheared at temperatures of-5,-20 and-30 °C, to different shear strains, up to γ = 2.6, equivalent to a maximum stretch of 2.94 (final line length is 2.94 times the original length). Cryo-electron backscatter diffraction (EBSD) analysis shows that basal intracrystalline slip planes become preferentially oriented parallel to the shear plane in all experiments, with a primary cluster of crystal c axes (the c axis is perpendicular to the basal plane) perpendicular to the shear plane. In all except the two highest-strain experiments at-30 °C, a secondary cluster of c axes is observed, at an angle to the primary cluster. With increasing strain, the primary c-axis cluster strengthens. With increasing temperature, both clusters strengthen. In the-5 °C experiments, the angle between the two clusters reduces with strain. The c-axis clusters are elongated perpendicular to the shear direction. This elongation increases with increasing shear strain and with decreasing temperature. Highly curved grain boundaries are more prevalent in samples sheared at higher temperatures. At each temperature, the proportion of curved boundaries decreases with increasing shear strain. Subgrains are observed in all samples. Microstructural interpretations and comparisons of the data from experimentally sheared samples with numerical models suggest that the observed crystallographic orientation patterns result from a balance of the rates of lattice rotation (during dislocation creep) and growth of grains by strain-induced grain boundary migration (GBM). GBM is faster at higher temperatures and becomes less important as shear strain increases. These observations and interpretations provide a hypothesis to be tested in further experiments and using numerical models, with the ultimate goal of aiding the interpretation of crystallographic preferred orientations in naturally deformed ice

    Inferring Meta-models for Runtime System Data from the Clients of Management APIs

    Full text link

    Harnessing Digital Evolution

    Full text link

    Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates

    Get PDF
    To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surface

    Relationship Between Non-Hodgkin's Lymphoma and Blood Levels of Epstein-Barr Virus in Children in North-Western Tanzania: A Case Control Study.

    Get PDF
    Non-Hodgkin's Lymphomas (NHL) are common in African children, with endemic Burkitt's lymphoma (BL) being the most common subtype. While the role of Epstein-Barr Virus (EBV) in endemic BL is known, no data are available about clinical presentations of NHL subtypes and their relationship to Human Immunodeficiency Virus (HIV) infection and Epstein Barr Virus (EBV) load in peripheral blood of children in north-western, Tanzania. A matched case control study of NHL subtypes was performed in children under 15 years of age and their respective controls admitted to Bugando Medical Centre, Sengerema and Shirati district designated hospitals in north-western, Tanzania, between September 2010 and April 2011. Peripheral blood samples were collected on Whatman 903 filter papers and EBV DNA levels were estimated by multiplex real-time PCR. Clinical and laboratory data were collected using a structured data collection tool and analysed using chi-square, Fisher and Wilcoxon rank sum tests where appropriate. The association between NHL and detection of EBV in peripheral blood was assessed using conditional logistic regression model and presented as odds ratios (OR) and 95% confidence intervals (CI). A total of 35 NHL cases and 70 controls matched for age and sex were enrolled. Of NHLs, 32 had BL with equal distribution between jaw and abdominal tumour, 2 had large B cell lymphoma (DLBCL) and 1 had NHL-not otherwise specified (NHL-NOS). Central nervous system (CNS) presentation occurred only in 1 BL patient; 19 NHLs had stage I and II of disease. Only 1 NHL was found to be HIV-seropositive. Twenty-one of 35 (60%) NHL and 21 of 70 (30%) controls had detectable EBV in peripheral blood (OR = 4.77, 95% CI 1.71 - 13.33, p = 0.003). In addition, levels of EBV in blood were significantly higher in NHL cases than in controls (p = 0.024). BL is the most common childhood NHL subtype in north-western Tanzania. NHLs are not associated with HIV infection, but are strongly associated with EBV load in peripheral blood. The findings suggest that high levels of EBV in blood might have diagnostic and prognostic relevance in African children
    corecore