396 research outputs found

    The role of cell-substrate interaction in regulating osteoclast activation: potential implications in targeting bone loss in rheumatoid arthritis

    Get PDF
    Analysis of tissues retrieved from the bone–pannus interface from patients with rheumatoid arthritis (RA) and studies in animal models of inflammatory arthritis provide strong evidence that osteoclasts, the cells that are essential for physiological bone resorption, are responsible for articular bone destruction in RA. However, current treatments that specifically target osteoclast-mediated bone resorption in RA have not been successful in preventing bone erosions, and new therapeutic strategies are needed. It has been noted that, although osteoclast precursors are present within the bone microenvironment at sites of pathological bone resorption, cells expressing the full morphological and functional properties of mature osteoclasts are restricted to the immediate bone surface and adjacent calcified cartilage. These findings provide evidence that, in addition to requirements for specific cytokines, interaction of osteoclast precursors with these mineralised matrices results in activation of specific signal pathways and the induction of unique gene products that are essential for terminal osteoclast differentiation and activation. These studies are designed to define the gene products and signalling pathways regulated by bone and calcified cartilage, to identify new molecular targets and novel therapeutic approaches for preventing osteoclast-mediated joint destruction in RA and related forms of pathological bone loss.K P McHugh, Z Shen, T N Crotti, M R Flannery, R P O’Sullivan, P E Purdue, S R Goldrin

    A multi-detector array for high energy nuclear e+e- pair spectrosocopy

    Full text link
    A multi-detector array has been constructed for the simultaneous measurement of energy- and angular correlation of electron-positron pairs produced in internal pair conversion (IPC) of nuclear transitions up to 18 MeV. The response functions of the individual detectors have been measured with mono-energetic beams of electrons. Experimental results obtained with 1.6 MeV protons on targets containing 11^{11}B and 19^{19}F show clear IPC over a wide angular range. A comparison with GEANT simulations demonstrates that angular correlations of e+ee^+e^- pairs of transitions in the energy range between 6 and 18 MeV can be determined with sufficient resolution and efficiency to search for deviations from IPC due to the creation and subsequent decay into e+ee^+e^- of a hypothetical short-lived neutral boson.Comment: 20 pages, 8 figure

    Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty

    Get PDF
    Increased failure rates due to metallic wear particle-associated adverse local tissue reactions (ALTR) is a significant clinical problem in resurfacing and total hip arthroplasty. Retrieved periprosthetic tissue of 53 cases with corrosion/conventional metallic wear particles from 285 revision operations for ALTR was selected for nano-analyses. Three major classes of hip implants associated with ALTR, metal-on-metal hip resurfacing arthroplasty (MoM HRA) and large head total hip replacement (MoM LHTHA) and non-metal-on-metal dual modular neck total hip replacement (Non-MoM DMNTHA) were included. The size, shape, distribution, element composition, and crystal structure of the metal particles were analyzed by conventional histological examination and electron microscopy with analytic tools of 2D X-ray energy dispersive spectrometry and X-ray diffraction. Distinct differences in size, shape, and element composition of the metallic particles were detected in each implant class which correlate with the histological features of severity of ALTR and variability in implant performance

    Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis.

    Get PDF
    Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions

    Comprehensive profiling analysis of actively resorbing osteoclasts identifies critical signaling pathways regulated by bone substrate

    Get PDF
    As the only cells capable of efficiently resorbing bone, osteoclasts are central mediators of both normal bone remodeling and pathologies associates with excessive bone resorption. However, despite the clear evidence of interplay between osteoclasts and the bone surface in vivo, the role of the bone substrate in regulating osteoclast differentiation and activation at a molecular level has not been fully defined. Here, we present the first comprehensive expression profiles of osteoclasts differentiated on authentic resorbable bone substrates. This analysis has identified numerous critical pathways coordinately regulated by osteoclastogenic cytokines and bone substrate, including the transition from proliferation to differentiation, and sphingosine-1-phosphate signaling. Whilst, as expected, much of this program is dependent upon integrin beta 3, the pre-eminent mediator of osteoclast-bone interaction, a surprisingly significant portion of the bone substrate regulated expression signature is independent of this receptor. Together, these findings identify an important hitherto underappreciated role for bone substrate in osteoclastogenesis.P. Edward Purdue, Tania N. Crotti, Zhenxin Shen, Jennifer Swantek, Jun Li, Jonathan Hill, Adedayo Hanidu, Janice Dimock, Gerald Nabozny, Steven R. Goldring, Kevin P. McHug

    Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1β-mediated cartilage degradation

    Get PDF
    Introduction: In inflammatory joint disease, such as osteoarthritis (OA), there is an increased level of proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines stimulate the production of matrix metalloproteinases (MMPs), which leads to the degradation of the cartilage extracellular matrix and the loss of key structural components such as sulphated glycosaminoglycan (sGAG) and collagen II. The aim of this study was to examine the therapeutic potential of n-3 polyunsaturated fatty acids (PUFAs) in an in vitro model of cartilage inflammation. Methods: Two specific n-3 compounds were tested, namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), each at 0.1, 1 and 10 μM. Full thickness bovine cartilage explants, 5 mm in diameter, were cultured for 5 days with or without IL-1β and in the presence or absence of each n-3 compound. The media were replaced every 24 hours and assayed for sGAG content using the 1,9-dimethylmethylene blue (DMB) method. Chondrocyte viability was determined at the end of the culture period using fluorescence microscopy to visualise cells labelled with calcein AM and ethidium homodimer. Results: Treatment with IL-1β (10 ng.ml-1) produced a large increase in sGAG release compared to untreated controls, but with no effect on cell viability, which was maintained above 80% for all treatments. In the absence of IL-1β, both n-3 compounds induced a mild catabolic response with increased loss of sGAG, particularly at 10 μM. By contrast, in the presence of IL-1β, both EPA and DHA at 0.1 and 1 μM significantly reduced IL-1β-mediated sGAG loss. The efficacy of the EPA treatment was maintained at approximately 75% throughout the 5-day period. However, at the same concentrations, the efficacy of DHA, although initially greater, reduced to approximately half that of EPA after 5 days. For both EPA and DHA, the highest dose of 10 μM was less effective. Conclusions: The results support the hypothesis that n-3 compounds are anti-inflammatory through competitive inhibition of the arachidonic acid oxidation pathway. The efficacy of these compounds is likely to be even greater at more physiological levels of IL-1β. Thus we suggest that n-3 PUFAs, particularly EPA, have exciting therapeutic potential for preventing cartilage degradation associated with chronic inflammatory joint disease

    Intracellular iron uptake is favored in Hfe-KO mouse primary chondrocytes mimicking an osteoarthritis-related phenotype

    Get PDF
    HFE-hemochromatosis is a disease characterized by a systemic iron overload phenotype mainly associated with mutations in the HFE protein (HFE) gene. Osteoarthritis (OA) has been reported as one of the most prevalent complications in HFE-hemochromatosis patients, but the mechanisms associated with its onset and progression remain incompletely understood. In this study, we have characterized the response to high iron concentrations of a primary culture of articular chondrocytes isolated from newborn Hfe-KO mice and compared the results with that of a similar experiment developed in cells from C57BL/6 wild-type (wt) mice. Our data provide evidence that both wt- and Hfe-KO-derived chondrocytes, when exposed to 50 mu M iron, develop characteristics of an OA-related phenotype, such as an increased expression of metalloproteases, a decreased extracellular matrix production, and a lower expression level of aggrecan. In addition, Hfe-KO cells also showed an increased expression of iron metabolism markers and MMP3, indicating an increased susceptibility to intracellular iron accumulation and higher levels of chondrocyte catabolism. Accordingly, upon treatment with 50 mu M iron, these chondrocytes were found to preferentially differentiate toward hypertrophy with increased expression of collagen I and transferrin and downregulation of SRY (sex-determining region Y)-box containing gene 9 (Sox9). In conclusion, high iron exposure can compromise chondrocyte metabolism, which, when simultaneously affected by an Hfe loss of function, appears to be more susceptible to the establishment of an OA-related phenotype.European Regional Development FundEuropean Union (EU) [EMBRC.PT Alg-01-0145-FEDER-022121, Norte-01-0145-FEDER-000012]Fundacao para a Ciencia e a TecnologiaPortuguese Foundation for Science and Technology [SFRH/BD/77056/2011]Portuguese Foundation for Science and TechnologyPortuguese Foundation for Science and TechnologyPortuguese Science and Technology FoundationPortuguese Foundation for Science and Technologyinfo:eu-repo/semantics/publishedVersio

    Articular cartilage and changes in Arthritis: Cell biology of osteoarthritis

    Get PDF
    The reaction patterns of chondrocytes in osteoarthritis can be summarized in five categories: (1) proliferation and cell death (apoptosis); changes in (2) synthetic activity and (3) degradation; (4) phenotypic modulation of the articular chondrocytes; and (5) formation of osteophytes. In osteoarthritis, the primary responses are reinitiation of synthesis of cartilage macromolecules, the initiation of synthesis of types IIA and III procollagens as markers of a more primitive phenotype, and synthesis of active proteolytic enzymes. Reversion to a fibroblast-like phenotype, known as 'dedifferentiation', does not appear to be an important component. Proliferation plays a role in forming characteristic chondrocyte clusters near the surface, while apoptosis probably occurs primarily in the calcified cartilage
    corecore