1,342 research outputs found

    Epidemiology and prevention of pediatric viral respiratory infections in health-care institutions.

    Get PDF
    Nosocomial viral respiratory infections cause considerable illness and death on pediatric wards. Common causes of these infections include respiratory syncytial virus and influenza. Although primarily a community pathogen, rhinovirus also occasionally results in hospitalization and serious sequelae. This article reviews effective infection control interventions for these three pathogens, as well as ongoing controversies

    How to Avoid Common Pitfalls of Health IT Implementation

    Get PDF
    The stories in this guide were based on case studies about a specific intensive care IT system that integrates information from bedside monitors into a single intuitive display to provide better real-time information for clinicians

    Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases

    Full text link
    The linear compressibility of two-dimensional fatty acid mesophases has determined by grazing incidence x-ray diffraction. Surface pressure vs molecular area isotherms were reconstructed from these measurements, and the linear compressibility (relative distortion along a given direction for isotropic applied stress) was determined both in the sample plane and in a plane normal to the aliphatic chain director (transverse plane). The linear compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are distributed depending on their magnitude in 4 different sets which we are able to associate with different molecular mechanisms. The largest compressibilities (10m/N) are observed in the tilted phases. They are apparently independent of the chain length and could be related to the reorganization of the headgroup hydrogen-bounded network, whose role should be revalued. Intermediate compressibilities are observed in phases with quasi long-range order (directions normal to the molecular tilt in L_2 or L_2' phases, S phase), and could be related to the ordering of these phases. The lowest compressibilities are observed in the solid untilted CS phase and for 1 direction of the S and L_2'' phases. They are similar to the compressibility of crystalline polymers and correspond to the interactions between methyl groups in the crystal. Finally, negative compressibilities are observed in the transverse plane for L_2' and L_2'' phases and can be traced to subtle reorganizations upon untilting.Comment: 24 pages, 17 figure

    Coarsening in surface growth models without slope selection

    Full text link
    We study conserved models of crystal growth in one dimension [∂tz(x,t)=−∂xj(x,t)\partial_t z(x,t) =-\partial_x j(x,t)] which are linearly unstable and develop a mound structure whose typical size L increases in time (L=tnL = t^n). If the local slope (m=∂xzm =\partial_x z) increases indefinitely, nn depends on the exponent γ\gamma characterizing the large mm behaviour of the surface current jj (j=1/∣m∣γj = 1/|m|^\gamma): n=1/4n=1/4 for 1<γ<31< \gamma <3 and n=(1+γ)/(1+5γ)n=(1+\gamma)/(1+5\gamma) for γ>3\gamma>3.Comment: 7 pages, 2 EPS figures. To be published in J. Phys. A (Letter to the Editor

    Ordered interfaces for dual easy axes in liquid crystals

    Get PDF
    International audienceUsing nCB films adsorbed on MoS 2 substrates studied by x-ray diffraction, optical microscopy and Scanning Tunneling Microscopy, we demonstrate that ordered interfaces with well-defined orientations of adsorbed dipoles induce planar anchoring locked along the adsorbed dipoles or the alkyl chains, which play the role of easy axes. For two alternating orientations of the adsorbed dipoles or dipoles and alkyl chains, bi-stability of anchoring can be obtained. The results are explained using the introduction of fourth order terms in the phenomenological anchoring potential, leading to the demonstration of first order anchoring transition in these systems. Using this phenomenological anchoring potential, we finally show how the nature of anchoring in presence of dual easy axes (inducing bi-stability or average orientation between the two easy axes) can be related to the microscopical nature of the interface. Introduction Understanding the interactions between liquid crystal (LC) and a solid substrate is of clear applied interest, the vast majority of LC displays relying on control of interfaces. However this concerns also fundamental problems like wetting phenomena and all phenomena of orientation of soft matter bulk induced by the presence of an interface. In LCs at interfaces, the so-called easy axes correspond to the favoured orientations of the LC director close to the interface. If one easy axis only is defined for one given interface, the bulk director orients along or close to this axis [1]. It is well known that, in anchoring phenomena, two major effects compete to impose the anchoring directions of a liquid crystal, first, the interactions between molecules and the interface, second, the substrate roughness whose role has been analyzed by Berreman [2]. The influence of adsorbed molecular functional groups at the interface is most often dominant with, for example in carbon substrates, a main influence of unsaturated carbon bonds orientation at the interface [3]. In common LC displays, there is one unique easy axis, but modifications of surfaces have allowed for the discovery of promising new anchoring-related properties. For instance, the first anchoring bi-stability has been established on rough surfaces, associated with electric ordo-polarization [4] and the competition between a stabilizing short-range term and a destabilizing long-range term induced by an external field, can induce a continuous variation of anchoring orientation [5]. More recently, surfaces with several easy axes have been studied extensively. It has been shown that control of a continuous variation of director pretilt, obtained in several systems [6, 7], is associated with the presence of two different easy axes, one perpendicular to the substrate (homeotropic) and one planar [7, 8]. Similar models can explain the continuous evolution of anchoring between two planar orientations observed on some crystalline substrates [9]. However, in the same time, two easy axes can also lead to anchoring bi-stability [10, 11] or discontinuous transitions of anchoring [9], which is not compatible with the model established to interpret observed control of pretilt. In order to be able to predict if bi-stability or continuous combination of the two easy axes occurs for one given system, it becomes necessary to understand the microscopic origin of the easy axes

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel

    Full text link
    We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl

    The HOPE fixation technique - a promising alternative to common prostate cancer biobanking approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of well-annotated prostate tissue samples through biobanks is key for research. Whereas fresh-frozen tissue is well suited for a broad spectrum of molecular analyses, its storage and handling is complex and cost-intensive. Formalin-fixed paraffin-embedded specimens (FFPE) are easy to handle and economic to store, but their applicability for molecular methods is restricted. The recently introduced Hepes-glutamic acid-buffer mediated Organic solvent Protection Effect (HOPE) is a promising alternative, which might have the potential to unite the benefits of FFPE and fresh-frozen specimen. Aim of the study was to compare HOPE-fixed, FFPE and fresh-frozen bio-specimens for their accessibility for diagnostic and research purposes.</p> <p>Methods</p> <p>10 prostate cancer samples were each preserved with HOPE, formalin, and liquid nitrogen and studied with in-situ and molecular methods. Samples were H&E stained, and assessed by immunohistochemistry (i.e. PSA, GOLPH2, p63) and FISH (i.e. <it>ERG </it>rearrangement). We assessed DNA integrity by PCR, using control genes ranging from 100 to 600 bp amplicon size. RNA integrity was assessed through qRT-PCR on three housekeeping genes (TBP, GAPDH, β-actin). Protein expression was analysed by performing western blot analysis using GOLPH2 and PSA antibodies.</p> <p>Results</p> <p>Of the HOPE samples, morphologic quality of H&E sections, immunohistochemical staining, and the FISH assay was at least equal to FFPE tissue, and significantly better than the fresh-frozen specimens. DNA, RNA, and protein analysis of HOPE samples provided similar results as compared to fresh-frozen specimens. As expected, FFPE-samples were inferior for most of the molecular analyses.</p> <p>Conclusions</p> <p>This is the first study, comparatively assessing the suitability of these fixation methods for diagnostic and research utilization. Overall, HOPE-fixed bio-specimens combine the benefits of FFPE- and fresh-frozen samples. Results of this study have the potential to expand on contemporary prostate tissue biobanking approaches and can serve as a model for other organs and tumors.</p

    Hole dynamics in noble metals

    Full text link
    We present a detailed analysis of hole dynamics in noble metals (Cu and Au), by means of first-principles many-body calculations. While holes in a free-electron gas are known to live shorter than electrons with the same excitation energy, our results indicate that d-holes in noble metals exhibit longer inelastic lifetimes than excited sp-electrons, in agreement with experiment. The density of states available for d-hole decay is larger than that for the decay of excited electrons; however, the small overlap between d- and sp-states below the Fermi level increases the d-hole lifetime. The impact of d-hole dynamics on electron-hole correlation effects, which are of relevance in the analysis of time-resolved two-photon photoemission experiments, is also addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Electron-phonon renormalization of the absorption edge of the cuprous halides

    Full text link
    Compared to most tetrahedral semiconductors, the temperature dependence of the absorption edges of the cuprous halides (CuCl, CuBr, CuI) is very small. CuCl and CuBr show a small increase of the gap E0E_0 with increasing temperature, with a change in the slope of E0E_0 vs. TT at around 150 K: above this temperature, the variation of E0E_0 with TT becomes even smaller. This unusual behavior has been clarified for CuCl by measurements of the low temperature gap vs. the isotopic masses of both constituents, yielding an anomalous negative shift with increasing copper mass. Here we report the isotope effects of Cu and Br on the gap of CuBr, and that of Cu on the gap of CuI. The measured isotope effects allow us to understand the corresponding temperature dependences, which we also report, to our knowledge for the first time, in the case of CuI. These results enable us to develop a more quantitative understanding of the phenomena mentioned for the three halides, and to interpret other anomalies reported for the temperature dependence of the absorption gap in copper and silver chalcogenides; similarities to the behavior observed for the copper chalcopyrites are also pointed out.Comment: 14 pages, 5 figures, submitted to Phys. Rev.
    • …
    corecore