252 research outputs found
A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus
Open Access Journal; Published online: 29 August 2017A time-course transcriptome analysis of two cassava varieties that are either resistant or susceptible to cassava brown streak disease (CBSD) was conducted using RNASeq, after graft inoculation with Ugandan cassava brown streak virus (UCBSV). From approximately 1.92 billion short reads, the largest number of differentially expressed genes (DEGs) was obtained in the resistant (Namikonga) variety at 2 days after grafting (dag) (3887 DEGs) and 5 dag (4911 DEGs). At the same time points, several defense response genes (encoding LRR-containing, NBARC-containing, pathogenesis-related, late embryogenesis abundant, selected transcription factors, chaperones, and heat shock proteins) were highly expressed in Namikonga. Also, defense-related GO terms of âtranslational elongationâ, âtranslation factor activityâ, âribosomal subunitâ and âphosphorelay signal transductionâ, were overrepresented in Namikonga at these time points. More reads corresponding to UCBSV sequences were recovered from the susceptible variety (Albert) (733 and 1660 read counts per million (cpm)) at 45 dag and 54 dag compared to Namikonga (10 and 117âcpm respectively). These findings suggest that Namikongaâs resistance involves restriction of multiplication of UCBSV within the host. These findings can be used with other sources of evidence to identify candidate genes and biomarkers that would contribute substantially to knowledge-based resistance breeding
The Nature of the Hall Insulator
We have conducted an experimental study of the linear transport properties of
the magnetic-field induced insulating phase which terminates the quantum Hall
(QH) series in two dimensional electron systems. We found that a direct and
simple relation exists between measurements of the longitudinal resistivity,
, in this insulating phase and in the neighboring QH phase. In
addition, we find that the Hall resistivity, , can be quantized in
the insulating phase. Our results indicate that a close relation exists between
the conduction mechanism in the insulator and in the QH liquid.Comment: RevTeX, 4 pages, 4 figure
Stability of Bose condensed atomic Li-7
We study the stability of a Bose condensate of atomic Li in a (harmonic
oscillator) magnetic trap at non-zero temperatures. In analogy to the stability
criterion for a neutron star, we conjecture that the gas becomes unstable if
the free energy as a function of the central density of the cloud has a local
extremum which conserves the number of particles. Moreover, we show that the
number of condensate particles at the point of instability decreases with
increasing temperature, and that for the temperature interval considered, the
normal part of the gas is stable against density fluctuations at this point.Comment: Submitted for publication in Physical Review
Hund's Rule for Composite Fermions
We consider the ``fractional quantum Hall atom" in the vanishing Zeeman
energy limit, and investigate the validity of Hund's maximum-spin rule for
interacting electrons in various Landau levels. While it is not valid for {\em
electrons} in the lowest Landau level, there are regions of filling factors
where it predicts the ground state spin correctly {\em provided it is applied
to composite fermions}. The composite fermion theory also reveals a
``self-similar" structure in the filling factor range .Comment: 10 pages, revte
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions
We have studied a quantum Hamiltonian that models an array of ultrasmall
Josephson junctions with short range Josephson couplings, , and charging
energies, , due to the small capacitance of the junctions. We derive a new
effective quantum spherical model for the array Hamiltonian. As an application
we start by approximating the capacitance matrix by its self-capacitive limit
and in the presence of an external uniform background of charges, . In
this limit we obtain the zero-temperature superconductor-insulator phase
diagram, , that improves upon previous theoretical
results that used a mean field theory approximation. Next we obtain a
closed-form expression for the conductivity of a square array, and derive a
universal scaling relation valid about the zero--temperature quantum critical
point. In the latter regime the energy scale is determined by temperature and
we establish universal scaling forms for the frequency dependence of the
conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B
1999. We have added one important reference to this version of the pape
Hydrodynamic behavior in expanding thermal clouds of Rb-87
We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released
from an elongated trap. At our highest densities the mean free path is smaller
than the radial size of the cloud. After release the clouds expand
anisotropically. The cloud temperature drops by as much as 30%. This is
attributed to isentropic cooling during the early stages of the expansion. We
present an analytical model to describe the expansion and to estimate the
cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure
True Superconductivity in a 2D "Superconducting-Insulating" System
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition. Based on low-field
data and I-V characteristics, we find evidence of a low temperature
Metal-to-Superconductor transition. This transition is characterized by
hysteretic magnetoresistance and discontinuities in the I-V curves. The
metallic phase just above the transition is different from the "Fermi Metal"
before superconductivity sets in.Comment: 3 pages, 4 figure
Astrophysical structures from primordial quantum black holes
The characteristic sizes of astrophysical structures, up to the whole
observed Universe, can be recovered, in principle, assuming that gravity is the
overall interaction assembling systems starting from microscopic scales, whose
order of magnitude is ruled by the Planck length and the related Compton
wavelength. This result agrees with the absence of screening mechanisms for the
gravitational interaction and could be connected to the presence of Yukawa
corrections in the Newtonian potential which introduce typical interaction
lengths. This result directly comes out from quantization of primordial black
holes and then characteristic interaction lengths directly emerge from quantum
field theory.Comment: 11 page
Formality theorems for Hochschild complexes and their applications
We give a popular introduction to formality theorems for Hochschild complexes
and their applications. We review some of the recent results and prove that the
truncated Hochschild cochain complex of a polynomial algebra is non-formal.Comment: Submitted to proceedings of Poisson 200
- âŠ