14,509 research outputs found

    Models and techniques for hotel revenue management using a rolling horizon.

    Get PDF
    This paper studies decision rules for accepting reservations for stays in a hotel based on deterministic and stochastic mathematical programming techniques. Booking control strategies are constructed that include ideas for nesting, booking limits and bid prices. We allow for multiple day stays. Instead of optimizing a decision period consisting of a fixed set of target booking days, we simultaneously optimize the complete range of target booking dates that are open for booking at the moment of optimization. This yields a rolling horizon of overlapping decision periods, which will conveniently capture the effects of overlapping stays.Revenue management;Mathematical programming;Yield management

    Models and Techniques for Hotel Revenue Management Using a Roling Horizon

    Get PDF
    AbstractThis paper studies decision rules for accepting reservations for stays in a hotel based on deterministic and stochastic mathematical programming techniques. Booking control strategies are constructed that include ideas for nesting, booking limits and bid prices. We allow for multiple day stays. Instead of optimizing a decision period consisting of a fixed set of target booking days, we simultaneously optimize the complete range of target booking dates that are open for booking at the moment of optimization. This yields a rolling horizon of overlapping decision periods, which will conveniently capture the effects of overlapping stays.mathematical programming;Revenue Management;yield management

    1995 atmospheric trace molecule spectroscopy (ATMOS) linelist

    Get PDF
    The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment uses a Fourier-transform spectrometer on board the Space Shuttle to record infrared solar occultation spectra of the atmosphere at 0.01-cm^(-1) resolution. The current version of the molecular spectroscopic database used for the analysis of the data obtained during three Space Shuttle missions between 1992 and 1994 is described. It is an extension of the effort first described by Brown et al. [Appl. Opt. 26, 5154 (1987)] to maintain an up-to-date database for the ATMOS experiment. The three-part ATMOS compilation contains Line parameters of 49 molecular species between 0 and 10000 cm^(-1), The main list, with nearly 700,000 entries, is an updated version of the HITRAN 1992 database. The second compilation contains supplemental line parameters, and the third set consists of absorption cross sections to represent the unresolvable features of heavy molecules. The differences between the ATMOS database and other public compilations are discussed

    Characterizing the Hofstadter butterfly's outline with Chern numbers

    Full text link
    In this work, we report original properties inherent to independent particles subjected to a magnetic field by emphasizing the existence of regular structures in the energy spectrum's outline. We show that this fractal curve, the well-known Hofstadter butterfly's outline, is associated to a specific sequence of Chern numbers that correspond to the quantized transverse conductivity. Indeed the topological invariant that characterizes the fundamental energy band depicts successive stairways as the magnetic flux varies. Moreover each stairway is shown to be labeled by another Chern number which measures the charge transported under displacement of the periodic potential. We put forward the universal character of these properties by comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009

    Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom. Application to 1H NMR reversion experiments in nematic liquid crystals

    Get PDF
    An experimental study of NMR spin decoherence in nematic liquid crystals (LC) is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the Irreversible Quantum Decoherence (IQD) in LC, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the IQD of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic IQD. In order to contrast experiment and theory, the theory was adapted to obtain the IQD function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting are analysed in detail within this framework and their effects on the observed signal decay are numerically estimated. It is found that, though these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behavior of the IQD. As unique characteristic of the IQD, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of IQD associated with a quantum open spin system in LC. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibriu

    Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits

    Full text link
    Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is compensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The errors caused by (i) the influence of the environment,(ii) non-selective excitations, (iii) influence of different spin chains on each other, (iv) displacements of qubits from their perfect locations, and (v) fluctuations of the external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state the z component, M, of the magnetization of the whole system is equal to zero. The errors lead to a finite value of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M depends differently on the parameters of the system for each kind of error, varying these parameters would allow one to experimentally determine the most significant source of errors and to optimize correspondingly the quantum computer design in order to decrease the errors and M. Using our approach one can benchmark the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more complex quantum algorithms.Comment: 31 page

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.

    Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe1x_{1-x}Cox_x)2_2As2_2

    Full text link
    Critical current density was studied in single crystals of Ba(Fe1x_{1-x}Cox_x)2_2As2_2 for the values of xx spanning the entire doping phase diagram. A noticeable enhancement was found for slightly underdoped crystals with the peak at x=0.058x = 0.058. Using a combination of polarized-light imaging, x-ray diffraction and magnetic measurements we associate this behavior with the intrinsic pinning on structural domains in the orthorhombic phase. Domain walls extend throughout the sample thickness in the direction of vortices and act as extended pinning centers. With the increasing xx domain structure becomes more intertwined and fine due to a decrease of the orthorhombic distortion. This results in the energy landscape with maze-like spatial modulations favorable for pinning. This finding shows that iron-based pnictide superconductors, characterized by high values of the transition temperature, high upper critical fields, and low anisotropy may intrinsically have relatively high critical current densities.Comment: estimation of Jc correcte
    corecore