167 research outputs found

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.

    Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model

    Get PDF
    Staphylococcus aureus is an important human pathogen that is also able to kill the model nematode Caenorhabditis elegans. We constructed a 2,950-member Tn917 transposon insertion library in S. aureus strain NCTC 8325. Twenty-one of these insertions exhibited attenuated C. elegans killing, and of these, 12 contained insertions in different genes or chromosomal locations. Ten of these 12 insertions showed attenuated killing phenotypes when transduced into two different S. aureus strains, and 5 of the 10 mutants correspond to genes that have not been previously identified in signature-tagged mutagenesis studies. These latter five mutants were tested in a murine renal abscess model, and one mutant harboring an insertion in nagD exhibited attenuated virulence. Interestingly, Tn917 was shown to have a very strong bias for insertions near the terminus of DNA replication

    Ventricular pacing or dual-chamber pacing for sinus-node dysfunction

    Get PDF
    BACKGROUND Dual-chamber (atrioventricular) and single-chamber (ventricular) pacing are alternative treatment approaches for sinus-node dysfunction that causes clinically significant bradycardia. However, it is unknown which type of pacing results in the better outcome. METHODS We randomly assigned a total of 2010 patients with sinus-node dysfunction to dual-chamber pacing (1014 patients) or ventricular pacing (996 patients) and followed them for a median of 33.1 months. The primary end point was death from any cause or nonfatal stroke. Secondary end points included the composite of death, stroke, or hospitalization for heart failure; atrial fibrillation; heart-failure score; the pacemaker syndrome; and the quality of life. RESULTS The incidence of the primary end point did not differ significantly between the dual-chamber group (21.5 percent) and the ventricular-paced group (23.0 percent, P=0.48). In patients assigned to dual-chamber pacing, the risk of atrial fibrillation was lower (hazard ratio, 0.79; 95 percent confidence interval, 0.66 to 0.94; P=0.008), and heart-failure scores were better (P CONCLUSIONS In sinus-node dysfunction, dual-chamber pacing does not improve stroke-free survival, as compared with ventricular pacing. However, dual-chamber pacing reduces the risk of atrial fibrillation, reduces signs and symptoms of heart failure, and slightly improves the quality of life. Overall, dual-chamber pacing offers significant improvement as compared with ventricular pacing

    Crystallographic Evidence of Drastic Conformational Changes in the Active Site of a Flavin-Dependent

    Get PDF
    The soil actinomycete Kutzneria sp. 744 produces a class of highly decorated hexadepsipeptides, which represent a new chemical scaffold that has both antimicrobial and antifungal properties. These natural products, known as kutznerides, are created via nonribosomal peptide synthesis using various derivatized amino acids. The piperazic acid moiety contained in the kutzneride scaffold, which is vital for its antibiotic activity, has been shown to derive from the hydroxylated product of l-ornithine, l-N5-hydroxyornithine. The production of this hydroxylated species is catalyzed by the action of an FAD- and NAD(P)H-dependent N-hydroxylase known as KtzI. We have been able to structurally characterize KtzI in several states along its catalytic trajectory, and by pairing these snapshots with the biochemical and structural data already available for this enzyme class, we propose a structurally based reaction mechanism that includes novel conformational changes of both the protein backbone and the flavin cofactor. Further, we were able to recapitulate these conformational changes in the protein crystal, displaying their chemical competence. Our series of structures, with corroborating biochemical and spectroscopic data collected by us and others, affords mechanistic insight into this relatively new class of flavin-dependent hydroxylases and adds another layer to the complexity of flavoenzymes.National Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473

    Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs

    Full text link
    Trigonometric parallax determinations are presented for 28 late type dwarfs and brown dwarfs, including eight M dwarfs with spectral types between M7 and M9.5, 17 L dwarfs with spectral types between L0 and L8, and three T dwarfs. Broadband photometry at CCD wavelengths (VRIz) and/or near-IR wavelengths (JHK) are presented for these objects and for 24 additional late-type dwarfs. Supplemented with astrometry and photometry from the literature, including ten L and two T dwarfs with parallaxes established by association with bright, usually HIPPARCOS primaries, this material forms the basis for studying various color-color and color-absolute magnitude relations. The I-J color is a good predictor of absolute magnitude for late-M and L dwarfs. M_J becomes monotonically fainter with I-J color and with spectral type through late-L dwarfs, then brightens for early-T dwarfs. The combination of zJK colors alone can be used to classify late-M, early-L, and T dwarfs accurately, and to predict their absolute magnitudes, but is less effective at untangling the scatter among mid- and late-L dwarfs. The mean tangential velocity of these objects is found to be slightly less than that for dM stars in the solar neighborhood, consistent with a sample with a mean age of several Gyr. Using colors to estimate bolometric corrections, and models to estimate stellar radii, effective temperatures are derived. The latest L dwarfs are found to have T_eff ~ 1360 K.Comment: 48 pages, including 7 figures and 6 tables. Accepted for A

    The processing and impact of dissolved riverine nitrogen in the Arctic Ocean

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP- 0229302 and NSF-OPP-0732985.Support to SET was additionally provided by an NSERC Postdoctoral Fellowship

    Who Is at Risk for Diagnostic Discrepancies? Comparison of Pre- and Postmortal Diagnoses in 1800 Patients of 3 Medical Decades in East and West Berlin

    Get PDF
    <div><h3>Background</h3><p>Autopsy rates in Western countries consistently decline to an average of <5%, although clinical autopsies represent a reasonable tool for quality control in hospitals, medically and economically. Comparing pre- and postmortal diagnoses, diagnostic discrepancies as uncovered by clinical autopsies supply crucial information on how to improve clinical treatment. The study aimed at analyzing current diagnostic discrepancy rates, investigating their influencing factors and identifying risk profiles of patients that could be affected by a diagnostic discrepancy.</p> <h3>Methods and Findings</h3><p>Of all adult autopsy cases of the Charité Institute of Pathology from the years 1988, 1993, 1998, 2003 and 2008, the pre- and postmortal diagnoses and all demographic data were analyzed retrospectively. Based on power analysis, 1,800 cases were randomly selected to perform discrepancy classification (class I-VI) according to modified Goldman criteria. The rate of discrepancies in major diagnoses (class I) was 10.7% (95% CI: 7.7%–14.7%) in 2008 representing a reduction by 15.1%. Subgroup analysis revealed several influencing factors to significantly correlate with the discrepancy rate. Cardiovascular diseases had the highest frequency among class-I-discrepancies. Comparing the 1988-data of East- and West-Berlin, no significant differences were found in diagnostic discrepancies despite an autopsy rate differing by nearly 50%. A risk profile analysis visualized by intuitive heatmaps revealed a significantly high discrepancy rate in patients treated in low or intermediate care units at community hospitals. In this collective, patients with genitourinary/renal or infectious diseases were at particularly high risk.</p> <h3>Conclusions</h3><p>This is the current largest and most comprehensive study on diagnostic discrepancies worldwide. Our well-powered analysis revealed a significant rate of class-I-discrepancies indicating that autopsies are still of value. The identified risk profiles may aid both pathologists and clinicians to identify patients at increased risk for a discrepant diagnosis and possibly suboptimal treatment intra vitam.</p> </div

    Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice

    Get PDF
    Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments
    • …
    corecore