382 research outputs found
Metal-insulator transition at B=0 in an ultra-low density () two dimensional GaAs/AlGaAs hole gas
We have observed a metal-insulator transition in an ultra-low density two
dimensional hole gas formed in a high quality GaAs-AlGaAs heterostructure at
B=0. At the highest carrier density studied () the hole gas is strongly metallic, with an exceptional mobility of
. The low disorder and strength of the many-body
interactions in this sample are highlighted by the observation of re-entrant
metal insulator transitions in both the fractional () and integer
() quantum Hall regimes. On reducing the carrier density the
temperature and electric field dependence of the resistivity show that the
sample is still metallic at (), becoming
insulating at . Our results indicate that
electron-electron interactions are dominant at these low densities, pointing to
the many body origins of this metal-insulator transition. We note that the
value of at the transition () is large enough to allow
the formation of a weakly pinned Wigner crystal, and is approaching the value
calculated for the condensation of a pure Wigner crystal.Comment: 4 pages, latex, 4 postscript figures, submitted to EP2DS-12 on 21st
August 1997, to appear in Physica
Detection of Coulomb Charging around an Antidot
We have detected oscillations of the charge around a potential hill (antidot)
in a two-dimensional electron gas as a function of a perpendicular magnetic
field B. The field confines electrons around the antidot in closed orbits, the
areas of which are quantised through the Aharonov-Bohm effect. Increasing B
reduces each state's area, pushing electrons closer to the centre, until enough
charge builds up for an electron to tunnel out. This is a new form of the
Coulomb blockade seen in electrostatically confined dots. We have also studied
h/2e oscillations and found evidence for coupling of opposite spin states of
the lowest Landau level.Comment: 3 pages, 3 Postscript figures, submitted to the proceedings of
EP2DS-1
Geometric Suppression of Single-Particle Energy Spacings in Quantum Antidots
Quantum Antidot (AD) structures have remarkable properties in the integer
quantum Hall regime, exhibiting Coulomb-blockade charging and the Kondo effect
despite their open geometry. In some regimes a simple single-particle (SP)
model suffices to describe experimental observations while in others
interaction effects are clearly important, although exactly how and why
interactions emerge is unclear. We present a combination of experimental data
and the results of new calculations concerning SP orbital states which show how
the observed suppression of the energy spacing between states can be explained
through a full consideration of the AD potential, without requiring any effects
due to electron interactions such as the formation of compressible regions
composed of multiple states, which may occur at higher magnetic fields. A full
understanding of the regimes in which these effects occur is important for the
design of devices to coherently manipulate electrons in edge states using AD
resonances.Comment: 4 pages, 2 figure
Evolution of a Bose-condensed gas under variations of the confining potential
We discuss the dynamic properties of a trapped Bose-condensed gas under
variations of the confining field and find analytical scaling solutions for the
evolving coherent state (condensate). We further discuss the characteristic
features and the depletion of this coherent state.Comment: 4 pages, no postscript figure
Reply to ``Comment on `Magnetic field effects on neutron diffraction in the antiferromagnetic phase of '''
Fak, van Dijk and Wills (FDW) question our interpretation of elastic
neutron-scattering experiments in the antiferromagnetic phase of UPt_3. They
state that our analysis is incorrect because we average over magnetic
structures that are disallowed by symmetry. We disagree with FDW and reply to
their criticism. FDW also point out that we have mistaken the magnetic field
direction in the experiment reported by N. H. van Dijk et al. [Phys. Rev. B 58,
3186 (1998)]. We correct this error and note that our previous conclusion is
also valid for the correct field orientation.Comment: 3 page
The Aharonov-Bohm Effect in the Fractional Quantum Hall Regime
We have investigated experimentally resonant tunnelling through
single-particle states formed around an antidot by a magnetic field, in the
fractional quantum Hall regime. For 1/3 filling factor around the antidot,
Aharonov-Bohm oscillations are observed with the same magnetic field period as
in the integer quantum Hall regime. All our measurements are consistent with
quasiparticles of fractional charge e*. However, the results are also
consistent with particles of any charge (>= e*) as the system must rearrange
every time the flux enclosed increases by h/e.Comment: Postscript, 4 pages, gzipped (350 kB
Geometrical (2+1)-gravity and the Chern-Simons formulation: Grafting, Dehn twists, Wilson loop observables and the cosmological constant
We relate the geometrical and the Chern-Simons description of
(2+1)-dimensional gravity for spacetimes of topology , where
is an oriented two-surface of genus , for Lorentzian signature and general
cosmological constant and the Euclidean case with negative cosmological
constant. We show how the variables parametrising the phase space in the
Chern-Simons formalism are obtained from the geometrical description and how
the geometrical construction of (2+1)-spacetimes via grafting along closed,
simple geodesics gives rise to transformations on the phase space. We
demonstrate that these transformations are generated via the Poisson bracket by
one of the two canonical Wilson loop observables associated to the geodesic,
while the other acts as the Hamiltonian for infinitesimal Dehn twists. For
spacetimes with Lorentzian signature, we discuss the role of the cosmological
constant as a deformation parameter in the geometrical and the Chern-Simons
formulation of the theory. In particular, we show that the Lie algebras of the
Chern-Simons gauge groups can be identified with the (2+1)-dimensional Lorentz
algebra over a commutative ring, characterised by a formal parameter
whose square is minus the cosmological constant. In this
framework, the Wilson loop observables that generate grafting and Dehn twists
are obtained as the real and the -component of a Wilson loop
observable with values in the ring, and the grafting transformations can be
viewed as infinitesimal Dehn twists with the parameter .Comment: 50 pages, 6 eps figure
T-Odd Correlations in pi->e nu_e gamma and pi->mu nu_mu gamma Decays
The transverse lepton polarization asymmetry in pi_l2gamma decays may probe
T-violating interactions beyond the Standard Model. Dalitz plot distributions
of the expected effects are presented and compared to the contribution from the
Standard Model final state interactions. We give an example of a
phenomenologically viable model, where a considerable contribution to the
transverse lepton polarization asymmetry arises.Comment: 19 pages, 5 figures. To be published in Phys.Rev.D. Fixed sign in FSI
contribution figure, fixed formulas in K-bar{K} mixing analysis, added some
minor comment
Condensate fraction and critical temperature of a trapped interacting Bose gas
By using a mean field approach, based on the Popov approximation, we
calculate the temperature dependence of the condensate fraction of an
interacting Bose gas confined in an anisotropic harmonic trap. For systems
interacting with repulsive forces we find a significant decrease of the
condensate fraction and of the critical temperature with respect to the
predictions of the non-interacting model. These effects go in the opposite
direction compared to the case of a homogeneous gas. An analytic result for the
shift of the critical temperature holding to first order in the scattering
length is also derived.Comment: 8 pages, REVTEX, 2 figures, also available at
http://anubis.science.unitn.it/~oss/bec/BEC.htm
Conserving and Gapless Approximations for an Inhomogeneous Bose Gas at Finite Temperatures
We derive and discuss the equations of motion for the condensate and its
fluctuations for a dilute, weakly interacting Bose gas in an external potential
within the self--consistent Hartree--Fock--Bogoliubov (HFB) approximation.
Account is taken of the depletion of the condensate and the anomalous Bose
correlations, which are important at finite temperatures. We give a critical
analysis of the self-consistent HFB approximation in terms of the
Hohenberg--Martin classification of approximations (conserving vs gapless) and
point out that the Popov approximation to the full HFB gives a gapless
single-particle spectrum at all temperatures. The Beliaev second-order
approximation is discussed as the spectrum generated by functional
differentiation of the HFB single--particle Green's function. We emphasize that
the problem of determining the excitation spectrum of a Bose-condensed gas
(homogeneous or inhomogeneous) is difficult because of the need to satisfy
several different constraints.Comment: plain tex, 19 page
- …