287 research outputs found

    The role of input noise in transcriptional regulation

    Get PDF
    Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. This noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, global models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.Comment: 11 pages, 5 figures minor correction

    The Breast Cancer and the Environment Research Centers: Transdisciplinary Research on the Role of the Environment in Breast Cancer Etiology

    Get PDF
    ObjectivesWe introduce and describe the Breast Cancer and the Environment Research Centers (BCERC), a research network with a transdisciplinary approach to elucidating the role of environmental factors in pubertal development as a window on breast cancer etiology. We describe the organization of four national centers integrated into the BCERC network.Data sourcesInvestigators use a common conceptual framework based on multiple levels of biologic, behavioral, and social organization across the life span. The approach connects basic biologic studies with rodent models and tissue culture systems, a coordinated multicenter epidemiologic cohort study of prepubertal girls, and the integration of community members of breast cancer advocates as key members of the research team to comprise the network.Data extractionRelevant literature is reviewed that describes current knowledge across levels of organization. Individual research questions and hypotheses in BCERC are driven by gaps in our knowledge that are presented at genetic, metabolic, cellular, individual, and environmental (physical and social) levels.Data synthesisAs data collection on the cohort, animal experiments, and analyses proceed, results will be synthesized through a transdisciplinary approach.ConclusionCenter investigators are addressing a large number of specific research questions related to early pubertal onset, which is an established risk factor for breast cancer. BCERC research findings aimed at the primary prevention of breast cancer will be disseminated to the scientific community and to the public by breast cancer advocates, who have been integral members of the research process from its inception

    Glue ear, hearing loss and IQ:an association moderated by the child's home environment

    Get PDF
    BACKGROUND: Glue ear or otitis media with effusion (OME) is common in children and may be associated with hearing loss (HL). For most children it has no long lasting effects on cognitive development but it is unclear whether there are subgroups at higher risk of sequelae. OBJECTIVES: To examine the association between a score comprising the number of times a child had OME and HL (OME/HL score) in the first four/five years of life and IQ at age 4 and 8. To examine whether any association between OME/HL and IQ is moderated by socioeconomic, child or family factors. METHODS: Prospective, longitudinal cohort study: the Avon Longitudinal Study of Parents and Children (ALSPAC). 1155 children tested using tympanometry on up to nine occasions and hearing for speech (word recognition) on up to three occasions between age 8 months and 5 years. An OME/HL score was created and associations with IQ at ages 4 and 8 were examined. Potential moderators included a measure of the child's cognitive stimulation at home (HOME score). RESULTS: For the whole sample at age 4 the group with the highest 10% OME/HL scores had performance IQ 5 points lower [95% CI -9, -1] and verbal IQ 6 points lower [95% CI -10, -3] than the unaffected group. By age 8 the evidence for group differences was weak. There were significant interactions between OME/HL and the HOME score: those with high OME/HL scores and low 18 month HOME scores had lower IQ at age 4 and 8 than those with high OME/HL scores and high HOME scores. Adjusted mean differences ranged from 5 to 8 IQ points at age 4 and 8. CONCLUSIONS: The cognitive development of children from homes with lower levels of cognitive stimulation is susceptible to the effects of glue ear and hearing loss

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings.

    Get PDF
    Human mobility is an important driver of geographic spread of infectious pathogens. Detailed information about human movements during outbreaks are, however, difficult to obtain and may not be available during future epidemics. The Ebola virus disease (EVD) outbreak in West Africa between 2014-16 demonstrated how quickly pathogens can spread to large urban centers following one cross-species transmission event. Here we describe a flexible transmission model to test the utility of generalised human movement models in estimating EVD cases and spatial spread over the course of the outbreak. A transmission model that includes a general model of human mobility significantly improves prediction of EVD's incidence compared to models without this component. Human movement plays an important role not only to ignite the epidemic in locations previously disease free, but over the course of the entire epidemic. We also demonstrate important differences between countries in population mixing and the improved prediction attributable to movement metrics. Given their relative rareness, locally derived mobility data are unlikely to exist in advance of future epidemics or pandemics. Our findings show that transmission patterns derived from general human movement models can improve forecasts of spatio-temporal transmission patterns in places where local mobility data is unavailable

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study

    Get PDF
    Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an increase in the frequency of transcriptional bursts

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    MRSA in Conventional and Alternative Retail Pork Products

    Get PDF
    In order to examine the prevalence of Staphylococcus aureus on retail pork, three hundred ninety-five pork samples were collected from a total of 36 stores in Iowa, Minnesota, and New Jersey. S. aureus was isolated from 256 samples (64.8%, 95% confidence interval [CI] 59.9%–69.5%). S. aureus was isolated from 67.3% (202/300) of conventional pork samples and from 56.8% (54/95) of alternative pork samples (labeled “raised without antibiotics” or “raised without antibiotic growth promotants”). Two hundred and thirty samples (58.2%, 95% CI 53.2%–63.1%) were found to carry methicillin-sensitive S. aureus (MSSA). MSSA was isolated from 61.0% (183/300) of conventional samples and from 49.5% (47/95) of alternative samples. Twenty-six pork samples (6.6%, 95% CI 4.3%–9.5%) carried methicillin-resistant S. aureus (MRSA). No statistically significant differences were observed for the prevalence of S. aureus in general, or MSSA or MRSA specifically, when comparing pork products from conventionally raised swine and swine raised without antibiotics, a finding that contrasts with a prior study from the Netherlands examining both conventional and “biologic” meat products. In our study spa types associated with “livestock-associated” ST398 (t034, t011) were found in 26.9% of the MRSA isolates, while 46.2% were spa types t002 and t008—common human types of MRSA that also have been found in live swine. The study represents the largest sampling of raw meat products for MRSA contamination to date in the U.S. MRSA prevalence on pork products was higher than in previous U.S.-conducted studies, although similar to that in Canadian studies
    corecore