3,042 research outputs found
On the virial coefficients of nonabelian anyons
We study a system of nonabelian anyons in the lowest Landau level of a strong
magnetic field. Using diagrammatic techniques, we prove that the virial
coefficients do not depend on the statistics parameter. This is true for all
representations of all nonabelian groups for the statistics of the particles
and relies solely on the fact that the effective statistical interaction is a
traceless operator.Comment: 9 pages, 3 eps figure
Vector coherent state representations, induced representations, and geometric quantization: II. Vector coherent state representations
It is shown here and in the preceeding paper (quant-ph/0201129) that vector
coherent state theory, the theory of induced representations, and geometric
quantization provide alternative but equivalent quantizations of an algebraic
model. The relationships are useful because some constructions are simpler and
more natural from one perspective than another. More importantly, each approach
suggests ways of generalizing its counterparts. In this paper, we focus on the
construction of quantum models for algebraic systems with intrinsic degrees of
freedom. Semi-classical partial quantizations, for which only the intrinsic
degrees of freedom are quantized, arise naturally out of this construction. The
quantization of the SU(3) and rigid rotor models are considered as examples.Comment: 31 pages, part 2 of two papers, published versio
Cognitive demands of face monitoring: Evidence for visuospatial overload
Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information
Fibre bundle formulation of nonrelativistic quantum mechanics: I. Introduction. The evolution transport
We propose a new systematic fibre bundle formulation of nonrelativistic
quantum mechanics. The new form of the theory is equivalent to the usual one
but it is in harmony with the modern trends in theoretical physics and
potentially admits new generalizations in different directions. In it a pure
state of some quantum system is described by a state section (along paths) of a
(Hilbert) fibre bundle. Its evolution is determined through the bundle
(analogue of the) Schr\"odinger equation. Now the dynamical variables and the
density operator are described via bundle morphisms (along paths). The
mentioned quantities are connected by a number of relations derived in this
work.
The present first part of this investigation is devoted to the introduction
of basic concepts on which the fibre bundle approach to quantum mechanics
rests. We show that the evolution of pure quantum-mechanical states can be
described as a suitable linear transport along paths, called evolution
transport, of the state sections in the Hilbert fibre bundle of states of a
considered quantum system.Comment: 26 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and
amsfonts are required. Revised: new material, references, and comments are
added. Minor style chages. Continuation of quan-ph/9803083. For continuation
of the this series see http://www.inrne.bas.bg/mathmod/bozhome
The profile of a narrow line after single scattering by Maxwellian electrons: relativistic corrections to the kernel of the integral kinetic equation
The frequency distribution of photons in frequency that results from single
Compton scattering of monochromatic radiation on thermal electrons is derived
in the mildly relativistic limit. Algebraic expressions are given for (1) the
photon redistribution function, K(nu,Omega -> nu',Omega'), and (2) the spectrum
produced in the case of isotropic incident radiation, P(nu -> nu'). The former
is a good approximation for electron temperatures kT_e < 25 keV and photon
energies hnu < 50 keV, and the latter is applicable when hnu(hnu/m_ec^2) < kT_e
< 25 keV, hnu < 50 keV. Both formulae can be used for describing the profiles
of X-ray and low-frequency lines upon scattering in hot, optically thin
plasmas, such as present in clusters of galaxies, in the coronae of accretion
disks in X-ray binaries and AGNs, during supernova explosions, etc. Both
formulae can also be employed as the kernels of the corresponding integral
kinetic equations (direction-dependent and isotropic) in the general problem of
Comptonization on thermal electrons. The K(nu,Omega -> nu',Omega') kernel, in
particular, is applicable to the problem of induced Compton interaction of
anisotropic low-frequency radiation of high brightness temperature with free
electrons in the vicinity of powerful radiosources and masers.
Fokker-Planck-type expansion (up to fourth order) of the integral kinetic
equation with the P(nu -> nu') kernel derived here leads to a generalization of
the Kompaneets equation. We further present (1) a simpler kernel that is
necessary and sufficient to derive the Kompaneets equation and (2) an
expression for the angular function for Compton scattering in a hot plasma,
which includes temperature and photon energy corrections to the Rayleigh
angular function.Comment: 29 pages, 17 figures, accepted for publication in ApJ, uses
emulateapj.sty, corrects misprints in previous astro-ph versio
New CMB Power Spectrum Constraints from MSAMI
We present new cosmic microwave background (CMB) anisotropy results from the
combined analysis of the three flights of the first Medium Scale Anisotropy
Measurement (MSAM1). This balloon-borne bolometric instrument measured about 10
square degrees of sky at half-degree resolution in 4 frequency bands from 5.2
icm to 20 icm with a high signal-to-noise ratio. Here we present an overview of
our analysis methods, compare the results from the three flights, derive new
constraints on the CMB power spectrum from the combined data and reduce the
data to total-power Wiener-filtered maps of the CMB. A key feature of this new
analysis is a determination of the amplitude of CMB fluctuations at . The analysis technique is described in a companion paper by Knox.Comment: 9 pages, 6 included figure
Second magnetization peak in flux lattices: the decoupling scenario
The second peak phenomena of flux lattices in layered superconductors is
described in terms of a disorder induced layer decoupling transition. For weak
disorder the tilt mudulus undergoes an apparent discontinuity which leads to an
enhanced critical current and reduced domain size in the decoupled phase. The
Josephson plasma frequency is reduced by decoupling and by Josephson glass
pinning; in the liquid phase it varies as 1/[BT(T+T_0)] where T is temperature,
B is field and T_0 is the disorder dependent temperature of the multicritical
point.Comment: 5 pages, 1 eps figure, Revtex. Minor changes, new reference
Nonlocal looking equations can make nonlinear quantum dynamics local
A general method for extending a non-dissipative nonlinear Schr\"odinger and
Liouville-von Neumann 1-particle dynamics to an arbitrary number of particles
is described. It is shown at a general level that the dynamics so obtained is
completely separable, which is the strongest condition one can impose on
dynamics of composite systems. It requires that for all initial states
(entangled or not) a subsystem not only cannot be influenced by any action
undertaken by an observer in a separated system (strong separability), but
additionally that the self-consistency condition is fulfilled. It is shown that a correct
extension to particles involves integro-differential equations which, in
spite of their nonlocal appearance, make the theory fully local. As a
consequence a much larger class of nonlinearities satisfying the complete
separability condition is allowed than has been assumed so far. In particular
all nonlinearities of the form are acceptable. This shows that
the locality condition does not single out logarithmic or 1-homeogeneous
nonlinearities.Comment: revtex, final version, accepted in Phys.Rev.A (June 1998
- …