73 research outputs found

    Aligning Synthetic Medical Images with Clinical Knowledge using Human Feedback

    Full text link
    Generative models capable of capturing nuanced clinical features in medical images hold great promise for facilitating clinical data sharing, enhancing rare disease datasets, and efficiently synthesizing annotated medical images at scale. Despite their potential, assessing the quality of synthetic medical images remains a challenge. While modern generative models can synthesize visually-realistic medical images, the clinical validity of these images may be called into question. Domain-agnostic scores, such as FID score, precision, and recall, cannot incorporate clinical knowledge and are, therefore, not suitable for assessing clinical sensibility. Additionally, there are numerous unpredictable ways in which generative models may fail to synthesize clinically plausible images, making it challenging to anticipate potential failures and manually design scores for their detection. To address these challenges, this paper introduces a pathologist-in-the-loop framework for generating clinically-plausible synthetic medical images. Starting with a diffusion model pretrained using real images, our framework comprises three steps: (1) evaluating the generated images by expert pathologists to assess whether they satisfy clinical desiderata, (2) training a reward model that predicts the pathologist feedback on new samples, and (3) incorporating expert knowledge into the diffusion model by using the reward model to inform a finetuning objective. We show that human feedback significantly improves the quality of synthetic images in terms of fidelity, diversity, utility in downstream applications, and plausibility as evaluated by experts

    Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies

    Get PDF
    Given that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially effective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structurally distinct antifungals that inhibit yeast ScPma1p. These compounds provide new opportunities for drug discovery aimed at this important target

    Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function

    Get PDF
    The WHO estimates around a million children contract tuberculosis (TB) annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM). Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies

    Discovery of a Generalization Gap of Convolutional Neural Networks on COVID-19 X-Rays Classification

    No full text
    A number of recent papers have shown experimental evidence that suggests it is possible to build highly accurate deep neural network models to detect COVID-19 from chest X-ray images. In this paper, we show that good generalization to unseen sources has not been achieved. Experiments with richer data sets than have previously been used show models have high accuracy on seen sources, but poor accuracy on unseen sources. The reason for the disparity is that the convolutional neural network model, which learns features, can focus on differences in X-ray machines or in positioning within the machines, for example. Any feature that a person would clearly rule out is called a confounding feature. Some of the models were trained on COVID-19 image data taken from publications, which may be different than raw images. Some data sets were of pediatric cases with pneumonia where COVID-19 chest X-rays are almost exclusively from adults, so lung size becomes a spurious feature that can be exploited. In this work, we have eliminated many confounding features by working with as close to raw data as possible. Still, deep learned models may leverage source specific confounders to differentiate COVID-19 from pneumonia preventing generalizing to new data sources (i.e. external sites). Our models have achieved an AUC of 1.00 on seen data sources but in the worst case only scored an AUC of 0.38 on unseen ones. This indicates that such models need further assessment/development before they can be broadly clinically deployed. An example of fine-tuning to improve performance at a new site is given

    Evolve and survive

    No full text
    corecore