302 research outputs found

    Fission studies with 140 MeV α\bm{\alpha}-Particles

    Full text link
    Binary fission induced by 140 MeV α\alpha-particles has been measured for nat^{\rm nat}Ag, 139^{139}La, 165^{165}Ho and 197^{197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z2/A=24Z^2/A=24 is observed.Comment: 4 figures, 2 table

    Isotopic Production Cross Sections in Proton-Nucleus Collisions at 200 MeV

    Get PDF
    Intermediate mass fragments (IMF) from the interaction of 27^{27}Al, 59^{59}Co and 197^{197}Au with 200 MeV protons were measured in an angular range from 20 degree to 120 degree in the laboratory system. The fragments, ranging from isotopes of helium up to isotopes of carbon, were isotopically resolved. Double differential cross sections, energy differential cross sections and total cross sections were extracted.Comment: accepted by Phys. Rev.

    Non-equilibrium emission of complex fragments from p+Au collisions at 2.5 GeV proton beam energy

    Get PDF
    Energy and angular dependence of double differential cross sections d2σ^2\sigma/dΩ\OmegadE was measured for reactions induced by 2.5 GeV protons on Au target with isotopic identification of light products (H, He, Li, Be, and B) and with elemental identification of heavier intermediate mass fragments (C, N, O, F, Ne, Na, Mg, and Al). It was found that two different reaction mechanisms give comparable contributions to the cross sections. The intranuclear cascade of nucleon-nucleon collisions followed by evaporation from an equilibrated residuum describes low energy part of the energy distributions whereas another reaction mechanism is responsible for high energy part of the spectra of composite particles. Phenomenological model description of the differential cross sections by isotropic emission from two moving sources led to a very good description of all measured data. Values of the extracted parameters of the emitting sources are compatible with the hypothesis claiming that the high energy particles emerge from pre-equilibrium processes consisting in a breakup of the target into three groups of nucleons; small, fast and hot fireball of \sim 8 nucleons, and two larger, excited prefragments, which emits the light charged particles and intermediate mass fragments. The smaller of them contains \sim 20 nucleons and moves with velocity larger than the CM velocity of the proton projectile and the target. The heavier prefragment behaves similarly as the heavy residuum of the intranuclear cascade of nucleon-nucleon collisions. %The mass and charge dependence of the total production cross %sections was extracted from the above analysis for all observed %reaction products. This dependence follows the power low behavior %(Aτ^{-\tau} or Zτ^{-\tau})

    Statistical Interpretation of Joint Multiplicity Distributions of Neutrons and Charged Particles

    Full text link
    Experimental joint multiplicity distributions of neutrons and charged particles emitted in complex nuclear reactions provide an important test of theoretical models. The method is applied to test three different theoretical models of nuclear multi-fragmentation, two of which fail the test. The measurement of neutrons is decisive in distinguishing between the Berlin and Copenhagen models of nuclear multi-fragmentation and challenges the interpretation of pseudo- Arrhenius plots. Statistical-model evaporation calculations with GEMINI give a good reproduction first and second moments of the experimental multiplicity correlations.Comment: 12 pages, 3 figures Added GEMINI calculations of multiplicity correlations Added brief discussion of how neutron emission is treated in MMM

    Signal and System Approximation from General Measurements

    Full text link
    In this paper we analyze the behavior of system approximation processes for stable linear time-invariant (LTI) systems and signals in the Paley-Wiener space PW_\pi^1. We consider approximation processes, where the input signal is not directly used to generate the system output, but instead a sequence of numbers is used that is generated from the input signal by measurement functionals. We consider classical sampling which corresponds to a pointwise evaluation of the signal, as well as several more general measurement functionals. We show that a stable system approximation is not possible for pointwise sampling, because there exist signals and systems such that the approximation process diverges. This remains true even with oversampling. However, if more general measurement functionals are considered, a stable approximation is possible if oversampling is used. Further, we show that without oversampling we have divergence for a large class of practically relevant measurement procedures.Comment: This paper will be published as part of the book "New Perspectives on Approximation and Sampling Theory - Festschrift in honor of Paul Butzer's 85th birthday" in the Applied and Numerical Harmonic Analysis Series, Birkhauser (Springer-Verlag). Parts of this work have been presented at the IEEE International Conference on Acoustics, Speech, and Signal Processing 2014 (ICASSP 2014

    Comparison of nonequilibrium processes in p+Ni and p+Au collisions at GeV energies

    Get PDF
    The energy and angular dependence of double differential cross sections d2sigma/dOmega dE were measured for p, d, t, 3,4,6He, 6,7,8Li, 7,9,10Be, 10,11B, and C produced in collisions of 1.2, 1.9, and 2.5 GeV protons with a Ni target. The shape of the spectra and angular distributions does almost not change whereas the absolute value of the cross sections increases by a factor about 1.7 for all ejectiles in this beam energy range. It was found that energy and angular dependencies of the cross sections cannot be reproduced by the microscopic model of intranuclear cascade with coalescence of nucleons and the statistical model for evaporation of particles from excited, equilibrated residual nuclei. The inclusion of nonequilibrium processes, described by a phenomenological model of the emission from fast and hot moving sources, resulting from break-up of the target nucleus by impinging proton, leads to very good reproduction of data. Cross sections of these processes are quite large, exhausting approximately half of the total production cross sections. Due to good reproduction of energy and angular dependencies of d2sigma/dOmega dE by model calculation it was possible to determine total production cross sections for all studied ejectiles. Results obtained in this work point to the analogous reaction mechanism for proton induced reactions on Ni target as that observed previously for Au target in the same beam energy range.Comment: 11 pages, 10 figures

    Variation of nonequilibrium processes in p+Ni system with beam energy

    Get PDF
    The energy and angular dependence of double differential cross sections dsigma/dOmega dE were measured for p, d, t, 3,4He, 6,7Li, 7,9Be, and 10,11B produced in collisions of 0.175 GeV protons with Ni target. The analysis of measured dfferential cross sections allowed to extract total production cross sections for ejectiles listed above. The shape of the spectra and angular distributions indicate the presence of other nonequilibrium processes besides the emission of nucleons from the intranuclear cascade, and besides the evaporation of various particles from remnants of intranuclear cascade. These nonequilibrium processes consist of coalescence of nucleons into light charged particles during the intranuclear cascade, of the fireball emission which contributes to the cross sections of protons and deuterons, and of the break-up of the target nucleus which leads to the emission of intermediate mass fragments. All such processes were found earlier at beam energies 1.2, 1.9, and 2.5 GeV for Ni as well as for Au targets, however, significant differences in properties of these processes at high and low beam energy are observed in the present study.Comment: 10 pages, 9 figure

    Competition of coalescence and "fireball" processes in nonequilibrium emission of light charged particles from p+Au collisions

    Get PDF
    The energy and angular dependence of double differential cross sections was measured for p,d,t,He,Li,Be, and B isotopes produced in collisions of 1.2 and 1.9 GeV protons with Au target. The shape of the spectra and angular distributions almost does not change in the beam energy range from 1.2 to 2.5 GeV, however, the absolute value of the cross sections increases for all ejectiles. A phenomenological model of two emitting, moving sources reproduces very well spectra and angular distributions of intermediate mass fragments. Double differential cross sections for light charged particles (LCP) were analyzed in the frame of the microscopic model of intranuclear cascade (INC) with coalescence of nucleons and statistical model for evaporation of particles from excited residual nuclei. Energy and angular dependencies of data agree satisfactorily neither with predictions of microscopic intranuclear cascade calculations for protons, nor with coalescence calculations for other LCP. Phenomenological inclusion of another reaction mechanism - emission of LCP from a "fireball", i.e., fast and hot moving source - combined with the microscopic model calculations of INC, coalescence and evaporation of particles leads to very good description of the data. It was found that nonequilibrium processes are very important for production of LCP. They exhaust 40-80% of the total cross sections - depending on the emitted particles. Coalescence and "fireball" emission give comparable contributions to the cross sections with exception of 3He data where coalescence clearly dominates. The ratio of sum of all nonequilibrium processes to those proceeding through stage of statistical equilibrium does almost not change in the beam energy range from 1.2 GeV to 2.5 GeV for all light charged particles.Comment: 14 pages, 12 figures, IV tables, \pacs{25.40.-h,25.40.Sc,25.40.Ve
    corecore