5,242 research outputs found

    Results of a search for deuterium at 25-50 GC/c using a magnetic spectrometer

    Get PDF
    A method is presented for separately identifying isotopes using a Cerenkov detector and a magnet spectrometer. Simulations of the method are given for separating deuterium from protons. The simulations are compared with data gathered from the 1979 flight of the New Mexico State University balloonborne magnet spectrometer. The simulation and the data show the same general characteristics lending credence to the technique. The data show an apparent deuteron signal which is (11 + or - 3)% of the total sample in the rigidity region 38.5 to 50 GV/c. Until further background analysis and subtraction is performed this should be regarded as an upper limit to the deuteron/(deuteron+proton) ratio

    Precision laser range finder system design for Advanced Technology Laboratory applications

    Get PDF
    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible

    Study of an instrument for sensing errors in a telescope wavefront

    Get PDF
    Focal plane sensors for determining the error in a telescope wavefront were investigated. The construction of three candidate test instruments and their evaluation in terms of small wavefront error aberration measurements are described. A laboratory wavefront simulator was designed and fabricated to evaluate the test instruments. The laboratory wavefront error simulator was used to evaluate three tests; a Hartmann test, a polarization shearing interferometer test, and an interferometric Zernike test

    Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    Get PDF
    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16–17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 GeV. Both the absolute flux of antiprotons and the antiproton/proton ratio are consistent with recent theoretical work in which antiprotons are produced as secondary products of cosmic ray interactions with the interstellar medium. This consistency implies a lower limit to the antiproton lifetime of ∼10 to the 7th yr

    A novel laser ranging system for measurement of ground-to-satellite distances

    Get PDF
    A technique was developed for improving the precision of laser ranging measurements of ground-to-satellite distances. The method employs a mode-locked laser transmitter and utilizes an image converter tube equipped with deflection plates in measuring the time of flight of the laser pulse to a distant retroreflector and back. Samples of the outgoing and returning light pulses are focussed on the photocathode of the image converter tube, whose deflection plates are driven by a high-voltage 120 MHz sine wave derived from a very stable oscillator. From the relative positions of the images produced at the output phosphor by the two light pulses, it is possible to make a precise determination of the fractional amount by which the time of flight exceeds some large integral multiple of the period of the deflection sinusoid

    The Local Interstellar Spectrum of Cosmic Ray Electrons

    Full text link
    The direct measurements of electrons and positrons over the last 30 years, corrected for the solar effect in the force-field approximation, are considered. The resulting overall electron spectrum may be fitted with a single power law above few GeV with spectral index (γ−=3.41±0.02\gamma_{-} = 3.41 \pm 0.02), consistent with the spectral index of the positron spectrum (γ+=3.40±0.06\gamma_{+} = 3.40 \pm 0.06), therefore suggesting a common acceleration process for both species. We propose that the engine was a shock wave originating from the last supernova explosion among those that formed the local bubble. In addition, at low energy, the electron spectrum measured during the last A+A+ solar phase is damped, whereas the positron spectrum is well represented by a single power law down to the lowest inferred local interstellar energy (0.8 GeV). We suggest that this difference arises from a time- and charge-dependent effect of the solar modulation that is not taken into account by the force-field approximation.Comment: 10 pages, 9 figures, 1 table. OBSOLETE: please refer to ApJ 612 (2004) 262-267, that is the final version of this wor

    Absolute rigidity spectrum of protons and helium nuclei above 10 GV/c

    Get PDF
    Proton and helium nuclei differential spectra were gathered with a balloon borne magnet spectrometer. The data were fitted to the assumption that the differential flux can be represented by a power law in rigidity. In the rigidity range 10 to 25 GV/c the spectral indices were found to be -(2.74 plus or minus 0.04) for protons and -(2.71 plus or minus 0.05) for helium nuclei. A brief discussion is given by systematic errors

    Observation of cosmic ray positrons from 5 to 25 GeV

    Get PDF
    The positron data gathered in conjunction with electron data published elsewhere is reported. The basic recognition scheme was to look for low mass positive particles that cause a cascade in a 7 radiation length shower counter. The mass criteria is imposed by selecting particles that were accompanied by Cherenkov light but whose rigidity was below the proton Cherenkov threshold. Thus the proton Cherenkov threshold represents an upper limit to the range of the experiment

    Non-gapped Fermi surfaces, quasiparticles and the anomalous temperature dependence of the near-EFE_F electronic states in the CMR oxide La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 with x=0.36x=0.36

    Full text link
    After years of research into colossal magnetoresistant (CMR) manganites using bulk techniques, there has been a recent upsurge in experiments directly probing the electronic states at or near the surface of the bilayer CMR materials La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 using angle-resolved photoemission or scanning probe microscopy. Here we report new, temperature dependent, angle resolved photoemission data from single crystals with a doping level of x=0.36x=0.36. The first important result is that there is no sign of a pseudogap in the charge channel of this material for temperatures below the Curie temperature TCT_C. The second important result concerns the temperature dependence of the electronic states. The temperature dependent changes in the Fermi surface spectra both at the zone face and zone diagonal regions in kk-space indicate that the coherent quasiparticle weight disappears for temperatures significantly above TCT_C, and that the kk-dependence of the T-induced changes in the spectra invalidate an interpretation of these data in terms of the superposition of a `universal' metallic spectrum and an insulating spectrum whose relative weight changes with temperature. In this sense, our data are not compatible with a phase separation scenario.Comment: 6 pages, 4 figure
    • …
    corecore