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ABSTRACT

This report describes two-years of work on NASA contract NAS8-

27863 entitled "Study of an Instrument for Sensing Errors in a Tele-

scope Wavefront." It contains results of theoretical and experimental

investigations of different focal plane sensors for determining the

error in a telescope wavefront.

The construction of three candidate test instruments and their

evaluation in terms of small wavefront aberration measurements are

described. A laboratory wavefront error simulator was designed and

fabricated to evaluate the various test instruments. This simulator

can introduce low-order aberrations up to several waves in magnitude,

with an incremental adjustment capability better than X/100. Each

aberration type can be introduced independently and with any orientation

desired. The laboratory wavefront error simulator was used to evaluate

three tests, a Hartmann test, a polarization shearing interferometer

test, and an interferometric Zernike test.

The Hartmann test was chosen for its relatively wide range of

operation, potential sensitivity, and relative simplicity. The Hartmann

test configuration is discussed and analyzed, and the constructioh of

an experimental test instrument- i described.

The wavefront error simulator was used to determine experimen-

tally the Hartmann test instrument's capability to detect different

amounts of low-order aberrations of different types under laboratory



conditions. It was found that sensitivities in the A/50 to A/100 range

could be realized.

The polarization shearing interferometer test was chosen for

the purpose of evaluating a polarization type readout using a star

source. A lateral shearing polarization interferometer was evaluated

analytically to predict sensitivities based on available star sources.

An error analysis was done considering the effects of alignment and

fabrication errors. The fabricated interferometer was evaluated with

the wavefront error simulator, using a laser star source. Sensitivities

of /100 were obtained under laboratory conditions.

The Zernike test was chosen for its potential high sensitivity

and simplicity. A new interpretation from an interferometric point of

view is presented for the Zernike test. Analytical expressions are

derived for the interference effects, in terms of physically controllable

Zernike disk parameters (radius, phase, and transmission) and low-order

aberrations. These provide a method for choosing the Zernike disk

parameters so as to optimize performance for maximum sensitivity and

linear range. Using these parameters, a signal-to-noise analysis was

performed to predict sensitivity.

A step-by-step procedure for manufacturing a Zernike disk and

the design and fabrication of a laboratory model of the Zernike test

instrument are described. The laboratory wavefront error simulator was

used to evaluate the low-order aberration measurement sensitivity of the

Zernike test instrument. Sensitivities were found to be better than

X/100 for aZll the low-order aberration types.
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CHAPTER 1

INTRODUCTION

The purpose of the work carried out at the Optical Sciences Cen-

ter under contract NAS8-27863 was to conduct experimental and analytical

research on optical testing concepts suitable for application to the

Large Space Telescope (LST) program. The following report includes much

of the analytical procedures and experimental design information that

was reported in the first-year interim report. In addition, this final

report contains actual experimental evaluation of the various optical

testing concepts and a bibliography on optical testing.

For LST application, an optical testing device, which we will

refer to for brevity as a figure sensor, should have a wide dynamic

range from a few waves to about a hundredth of a wave. Such a sensor

would serve as an absolute standard for alignment-associated problems

and as a means of sensing figure errors for the purpose of correction

or measuring wavefront errors for post-detection image processing. For

these purposes either selected wavefront samples or the entire system

wavefront should be accessible for measurement. In order to accomplish

these goals the figure sensor has to be placed at the focal plane of

the telescope, and a real star source has to be used.

Under the premise that there is no single test that has the

range required for alignment-associated wavefront errors and also the

sensitivity required (X/100) for image processing and figure correction,
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we divided our work into a study of (1) a coarse-range geometrical sen-

sor operating from several waves to a large fraction of a wave, and (2)

a fine-range sensor useful from a large fraction of a wave to approxi-

mately A/100. We narrowed our study to one candidate in the coarse

range (a modified Hartmann test) and to three contenders in the fine-

range region (Zernike test, shearing polarization test, and Zernike

polarization test). These are discussed in detail in this report. We

expected that many of the components used in the fine-range sensor would

also be suitable for use with the coarse-range sensor and that the range

of operation for coarse and fine sensing would have significant overlap.
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CHAPTER 2

ABERRATED TELESCOPE WAVEFRONT SIMULATOR

1. General

In order to experimentally determine the performance capabili-

ties of the various types of figure sensors, we designed and fabricated

a device to produce a simulated aberrated telescope wavefront. This

simulator includes a variable magnitude star, imaged by a specially

designed telescope that can introduce various alignment, focus, and

figure errors-such as may occur in the operational LST. The aberrated

star image produced can then be evaluated by the figure sensor under

study. A sketch of the simulator appears in Fig. 1. The star source

illuminator consists of a quartz iodine tungsten filament lamp, which

is run by a stabilized power supply. The filament is focused onto a

25-pm pinhole, through a narrow band interference filter if required.

The star source can be moved in the x,y direction to simulate wave-

front tilt in any direction. This light is collimated by a 1.2-m

Aberration generator Defocus.

Sensor

cLight , .'Relay Aberrated

source / Coma \ Spherical system star image

Collimator Astigmatism

Fig. 1. Aberrated telescope wavefront simulator.
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(48-in.) focal length telescope objective to simulate a star at in-

finity. The next five elements (biconvex lens, biconcave lens, two

flat plates, and thick meniscus) are collectively called the aberra-

tion generator. This group of elements produces an f/6 beam into which

various orientations and magnitudes of coma, astigmatism, and spheri-

cal aberration may be introduced in an exact manner. A relay system

then reimages the f/6 image. The first element of the relay system

is a 40-mm cemented doublet that collimates the aberrated star image.

The element can be moved along the optical axis of the system in order

to correct for focus shift produced by the aberration generator or

in order to introduce known amounts of defocus into the wavefront.

The second element of the relay system is an 80-mm focal length tele-

scope objective, which converges the light to an f/12 cone, completing

the simulation of an f/12 telescope where tilt, defocus, astigmatism,

coma, and spherical aberration can be introduced into the beam in

differential amounts of about X/100 and over the range of ±2 waves.

The final collimating lens is related to the figure sensor under test

and will be discussed in detail later.

2. Aberration Generator

At the heart of the aberrated telescope wavefront simulator is

the aberration generator. This instrument has been designed to intro-

duce precisely known amounts and orientations of different primary aber-

ration types. What follows is a discussion of the design concept, the

optical evaluation, the mechanical components, and the systematic error

and calibration of the aberration generator.
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a. Design Concept

The optical design is shown diagrammatically in Fig. 2. The

instrument consists of an achromatic air-spaced doublet with a 25.4-mm

clear aperture and a 152.4-mm focal length. The air-spaced doublet is

designed for high coma but minimum spherical and chromatic aberration.

o o

Rear nodal point
-12.90 mm from

rear vertex

R1 = R2 = 65.94mm Element 1: diameter = 30.18 mm

R3 = 59.36 mm Element 2: diameter = 30.18 mm
R4 = 269.72 mm Element 3: diameter = 47.62 mm
R5 = R6 = 44.72 mm Element 4: diameter = 47.62 mm
T = 6.36 mm Element 5: diameter = 30.18 mm
T2 = 5.08 mm Glass: element 2 = Schott F4
T3 = T4 = 12.70 mm all others = Schott SK4
T5 = 51.08 mm Coatings: all MgF 2 , n = 1.62
S1 = 1.27 mm Maximum tilt of plates - 150 (astigmatism)
S2 + S3 + S4 = 51.46 mm Maximum tilt of front doublet = 1.50 (coma)

when tilts = 00 12-mm leftward movement of meniscus = 2.8 waves of -OPD
S5 = 70.87 mm 20-mm rightward movement of meniscus = 1.2 waves of +OPD

Maximum image excursion = 3 mm

Fig. 2. Aberration generator; achromatic, nominal 5900 a,
nominal 152-mm EFL, f/6.



6

The residual astigmatism, inherent in a doublet design, is unavoidable

but can be readily taken into account. This doublet is tilted about its

rear nodal- point Clocated 12.90 mm inside the last radius R4) to generate

approximately 2 waves to third-order coma at a tilt of 1.50. About 0.4

waves of sagittal astigmatism are generated unavoidably at this angle.

However, since the coma varies linearly with tilt, while the astigmatism

varies quadratically, the astigmatism will be negligible for small

amounts of coma (i.e., for up to about a quarter wave of coma, the re-

sidual astigmatism is less than X/100). Higher-order aberration terms

are negligible for the objective. Although the doublet is color cor-

rected, a 40- to 50-nm bandwidth filter should be used for precise work.

Following the doublet are a set of parallel plates that can be counter

tipped to introduce astigmatism. No third-order coma is introduced, and

higher-order aberrations are negligible. These plates can be tilted up

to 150, at which point 4.4 waves of sagittal astigmatism are introduced.

Again, this astigmatism contribution varies quadratically. The last

element, a thick miniscus lens, can be moved longitudinally for genera-

tion of.+2.8 to -1.2 waves of spherical aberration. However, the effect

of moving this meniscus is complicated since both fifth- and third-order

spherical aberration are changed. A change in focal position and effec-

tive focal length must also be taken into account.

b. Optical Evaluation

i. Coma

The air-spaced doublet has been ray traced at a field angle of
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1.50, and the important coefficients for two wavelengths appear below

in Table I.

Table I

Design coefficients for air-spaced doublet

A = 546.1 nm, Field Angle 1.50

SA3 SA5 SA7 CMA3 CMA5 AST3

-1.84587E-3 +1.70755E-3 +1.86313E-4 -2.23989E-3 -1.7334E-5 -8.95394E-4

A = 632.8 nm

-2.57982E-3 1.66305E-3 1.87093E-4 -2.22001E-3 -2.45111E-5 -8.92584E-4

The meniscus element is positioned to minimize any spherical

aberration residual. Because extrinsic higher-order aberration contri-

butions are small and higher-order coma and astigmatism are negligible,

we can compute the optical path difference (OPD) changes introduced by

the doublet by using

OPDDblt = - CMA3r3 cospU - 1 AST3(cos24+l)r 2U 2 ,

where r is the fractional pupil height, is the angle measured from a

direction perpendicular td the tilt axis, and U is the fractional tilt

angle. As mentioned before, for OPD wave, the astigmatism contri-

bution is < X/100 and can be ignored.
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ii. Astigmatism

The two plane-parallel plates were ray traced at an angle of 150

in an f/6 convergent beam. Because of the high degree of correction in

the objective, it is expected that extrinsic contributions due to objec-

tive imperfection will be negligible. Since two counter-tipped plates

are used, the third-order coma cancels and the third-order astigmatism

dominates, with higher-order aberrations inconsequential. The meniscus

element is positioned to minimize the residual spherical aberration. A

summary of the third- and fifth-order coefficients for the two counter-

tipped plates appears in Table II. The OPD due to astigmatism is cal-

culated from

OPDAstigmatism =- AST3(cos24+1)r 2U2.

Table II

Design coefficients for astigmatism

= 546.1 nm, Plate Tilt 150

SA3 SA5 AST3 AST5

4.68100E-4 -1.50419E-6 4.83740E-3 -1.60639E-6

X = 632.8 nm

4.67761E-4 -1.49766E-6 4.833908E-3 -1.599410E-6



iii. Spherical aberration

The position of the meniscus element relative to the doublet

will determine the amount of spherical aberration in the system. Strictly

speaking, this aberration contribution is very complex; third-, fifth-,

seventh-, and higher-order spherical coefficients are used to determine

the OPD in the pupil. However, from comparisons of exact ray trace OPD

to those calculated by using third-, fifth-, and seventh-order coeffi-

cients, the computational error is always better than 5% or 7% in the

OPD, where the smaller percentage refers to meniscus position changes

made to introduce small errors (approximately A/10), and the larger

percentage refers to meniscus position changes made to introduce larger

errors (approximately A/2). The OPD is calculated from

OPD - SA3r 4 - SA5r 6 - 1 SA7r 8 .8 12 19-

As we reposition the meniscus we also change the back focal position

(BFP) and the aberration generator effective focal length (GEFL). This

change in BFP is compensated in the relay optics, and the change in

GEFL results in an f/No. change that can be compensated by stopping

down the pupil in order to maintain an f/6 cone in the generator and an

f/12 cone in the simulator. Figure 3 illustrates the BFP as a function

of meniscus position. Figure 4 shows the GEFL as a function of meniscus

position. Figures 5, 6, and 7 show the variation of third-, fifth-,

and seventh-order spherical aberration with meniscus position for two

wavelengths.
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E

116.50

C.
g 116.40-
0

M 116.30

40 41 42 43 44 45 46 47 48 49 50 51 52
Meniscus position (mm)

Fig. 3. Back focal position as a function of meniscus position.

164

162 -

160

E 158 -
E

- 156-

154-

152-

150-

148

146 111

40 42 44 46 48 50 52 54 56
Meniscus position (mm)

Fig. 4. Aberration generator effective focal length
(GEFL) as a function of meniscus position.
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Fig. 5. Third-order spherical aberration
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Fig. 6. Fifth-order spherical aberration
as a function of meniscus position.
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1SxlO- 5

0

10x105

632.8 n
-4

590 nm

46 56

Meniscus position (mm)

Fig. 7. Seventh-order spherical aberration
as a function of meniscus position.

iv. Overall optical path difference

The coefficients for the parameters below were obtained by ray

tracing at various positions of the meniscus. In order to obtain

analytical expressions for BFP, GEFL, SA3, SA5, and SA7 each of the

curves was fitted to a polynomial expression that resulted in the

following equations:

SA3 = (2.4683572 x 10 7)x3 _ (5.4403322 x 10-5)x 2

+ (3.9624001 x 10-3 )x - 0.092684628

SA5 = (5.4406814 x 10-8)x3 - (1.0583634 x 10-5)x 2

+ (7.0274608 x 10-4)x - 0.014209098
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SA7 = (7.9180215 10)x - (1.4642964 10 )x '

+ (9.3790299 x 10- 5 )x - (1.9275608 x 10- 3 )

BFP = -(3.9558132 x 10-5)x 3 - (8.0375794 x 10 )-4x2

+ (0.30452283)x + 108.12638

GEFL = (3.8922327 x 10-5)x 3 + (3.9824714 x 10-4)x 2

+ (0.65624124)x + 118.61591

where x refers to the spacing (in millimeters) between the plane-parallel

plates and the meniscus element. It is found by adding the reading on

the:dial indicator to a constant C. This constant was determined experi-

mentally in the calibration of the generator so as to compensate for

residual manufacturing errors. In using the full generator aperture,

as was done in the Hartmann and shearing tests, the nominal calibration

reference was 46.2 mm. For the Zernike test the generator had to be

stopped down, and the new calibration reference was 49.2 mm. These

corresponded to C values of 36.2 mm and 39.2 mm, respectively.

Using these equations and the expressions for the OPD contribu-

tion of the various components of the aberration generator we can

generate an overall expression for OPD introduced by the total aberration

generator as follows;

OPDTotal = OPDPinhole + OPDDoublet + OPDPlates

+ OPD . .Meniscus+ OPDRelay
Meniscus Relay
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where the optical pathdifference for the total aberration generator

OPDTotal is equal to the sum of the OPD's of the individual components

of the system.

The optical path difference contributed by lateral shifts in the

pinhole position OPDPinhole has the effect of tilting the wavefront.

This is expressed as

OPDinhole - r cos(q-a) = - 12.7r cos(-a)OPDinhole r cos(-)

where h is the radius of the entrance pupil, R is the focal length of

the aberration generator, 8 is the lateral distance from the pinhole to

the axial position, r is the lateral distance from the optical axis

(expressed as a fraction of the pupil radius) to the point on the wave-

front being evaluated, 4 is the angular position of the point on the

wavefront as measured from the vertical y axis, and a is the angular

position of the pinhole as measured from the vertical y axis. The

parameters 8 and a are determined by the readings of the micrometers

that position the pinhole x-y movement stage. They are

S Vx2 + _ 2 (AX-AXO)2 + (AY-AYO)2
CLEFL CLEFL

X AX-AXOa = arctan - = arctan AY-AYO
Y AY-AYO

where CLEFL is the focal length of the collimating lens, AX and AY are

the readings on the micrometers for the X and Y axes, respectively, and

AXO and AYO are the positions of the micrometers when the pinhole is
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located on the optical axis. The painramueters r and q, are det t'rminid by

the readings of the micrometers on the x-y stage that positions the

sampling aperture. The measurements made for r are divided by the

radius h' of the pupil in the plane of the sampling aperture

h (SEFL) (RIEFL) h
(GEFL)(R2EFL)

where SEFL is the focal length of the sampling lens (this lens recol-

limates the light from the second relay lens as shown in Fig. 1), R1EFL

and R2EFL are the focal lengths of the first and second relay lenses,

respectively, and GEFL is the focal length of the aberration generator

as determined above. Then,

r h

x PX-PXO
Q = arctan - = arctan PYPO ,

where PX and PY are the readings of the micrometers that position the

sampling aperture and PXO and PYO are the readings when the sampling

aperture is centered about the optical axis.

The optical path difference contributed by the tilt of the

doublet OPDDoublet is expressed by

OPDDoublet - -(CMA3)r 3U cose

= - (CMA3)r 3 (Uxcos + Uysing)

= - (CMA3)r3 -- ){(GXO-GX)coso + (GY-GYO)sin}
\.40' ~~V u~r~
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where CMA3 is the amount of coma introduced by tilting the doublet 1.50,

U is the angle of tilt from the optical axis as a fraction of the maxi-

mum angle of 1.50, and e is the angular position of the point being

sampled on the wavefront as it relates to the direction in which the

coma is being introduced. Ux and Uy are the x- and y-axis components of

the angle of the doublet and are measured by GX and GY as the readings

on the micrometers of the orientation device. GXO and GYO are the microm-

eter readings when there is no tilt in the doublet. The 0.049 factor

is the micrometer movement for a tilt of 1.50 and gives the angle as a

fraction of the angle for which CMAS was determined.

The optical path difference contributed by the tilting and ro-

tating of the plane-parallel plates OPDlates is expressed by

OPDlates = - (AST3) 2r2cos 28,

= - (AST3) 2(BZ-BZO) 122cos2 _ (RZ-RZO)],

where AST3 is the amount of astigmatism introduced when the plates are

tilted at an angle of 150 from their position normal to the optical

axis, w is the fraction of the 150 that they are actually tilted, and

e' is the angular position of the point being sampled on the wavefront

as it relates to the direction in which the astigmatism is being intro-

duced) and is equal to the difference between and the angle from the

vertical y axis of the coordinate system in which the plates are tilted.

BZ is the reading on the tilt dial indicator showing the tilt, and BZO

is the reading when the plates are both perpendicular to the optical
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axis. The difference is multiplied by two because each unit division

on the dial indicator is equal to 20 and then is divided by 15 to show

the angle as a fraction of the angle for which AST3 was determined. RZ

is the reading on the rotation indicator, and RZO is the reading when

sagittal astigmatism is introduced in the direction of the y axis.

The optical path difference contributed by the longitudinal

movement of the meniscus lens OPDMeniscus is represented by

OPD - h2  - (SA3)r 1 (SAS)r6 1 (SA7)r 8
Meniscus 2Q 6z 8 12 16

(12.7)2 1
= - 2(GEFL)2 (BFP-BFPO)r2 - 8 (SA3)r4

- (SA5)r6 - 1 (SA7)r8,

where 6 z is the change in focal position from the paraxial spherical

aberration condition position with change of the meniscus lens position,

and Q is the focal length of the aberration generator. BFP is the back

focal position of the star image, and BFPO is the back focal position

for minimum spherical aberration. SA3, SAS, SA7, GEFL, and BFP are de-

fined in detail above.

The optical path difference contributed by the movement of the

first relay lens OPDRelay is expressed by

OPD h2 - = - (12.7)2 (DZO-DZ)r2,
Relay 2Q 2  2(GEFL) 2

where 6R is the movement of the first relay lens. DZ is the reading of
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the dial gauge for the position of the relay lens, and DZO is the lens

position when its focal point coincides with the focal point of the

aberration generator with the meniscus lens positioned to give minimum

spherical aberration.

3. Mechanical Components

The air-spaced doublet in the aberration generator is counted in

a cell that threads into a Lansing Research Model 10.203 angular orien-

tation device with linear micrometer adjustments. Each 0.0001 in. divi-

sion of linear motion of the micrometers corresponds to a 13.5 arc

second rotation of the lens. The cell is threaded into the orientation

device until the rear nodal point of the lens coincides with the inter-

section of the x- and y-gimbal tilt axes. The direction and amount of

coma introduced are calculated from the angle at which the doublet is

tilted from the system optical axis.

The two plane-parallel plates are mounted into metal plates on

individual axes parallel to one another. A toothed gear on each plate

meshes with the gear on the other plate. Since both gears are of equal

size, a tilt of one plate will cause an equal and opposite tilt of the

other plate. One of these plates is geared to a dial indicator. Each

0.02 division on the dial is equivalent to a 2.4 minute tilt of each

plate. This whole assembly is bearing-mounted so that it will rotate

about the system optical axis. The bearing rotation is gear controlled.

These gears also operate a digit counter where a one-digit change corre-

sponds to 10 of rotation about the optical axis. The amount of
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astigmatism is computed from the angle difference between the two plates,

and the direction is determined by the tilt orientation.

The thick meniscus lens is mounted into a cell that is attached

to a micrometer slide. Initially the lens is positioned so as to give

minimum spherical aberration for the system. The lens can then be moved

toward or'away from the air-spaced doublet and parallel plates to put

various amounts of positive or negative spherical aberration into the

system. The travel of the lens is measured with a dial gauge having a

25-mm travel and reading to 0.01 mm. The amount of spherical aberration

is calculated from the distance between the adjusted position of the

meniscus lens and its nominal position when the system has minimum

spherical aberration.

The two cemented doublets for the relay optics are mounted in

individual cells. The cell for the first lens is mounted on a micrometer

slide and is positioned so that its focal point coincides with the image

formed by the aberration generator. As the image point moves along the

optical axis when the meniscus lens is moved, the first relay lens is

moved on its micrometer slide so as to keep its focal point and the

image in coincidence. This keeps the beam coming from.this lens colli-

mated. The collimated beam is then brought to a focus by the second

lens, an f/12 telescope objective. A photograph of the complete assembly

appears in Fig. 8.

4. Aberration Generator Systematic Error and Calibration

All radii, indices of refraction, thicknesses, and focal lengths
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of the various elements in the generator were either measured or known,

so the calculated coefficients for aberration prediction do not vary

from nominal values sufficiently to affect calculated OPD's by more than

2% to 3%.

There were two major sources of systematic errors. The first

was associated with the calibration error of the nominal zero position

setting of the meniscus element. The other was the error associated

with micrometer adjustments for the various components.

a. Meniscus Position Calibration and Associated Systematic Error

The following is a description of the procedure used to deter-

mine the nominal zero position of the meniscus element.

After all components of the generator were aligned, a visual

inspection of the star image was made and the meniscus element was set

so as to compensate for residual spherical aberration in the doublet

and parallel plates and for surface fabrication irregularities. The

actual numerical value of the nominal zero aberration reference posi-

tion had to be determined. This was necessary in order to use the non-

linear analytical expressions for spherical aberration and image shift

(BFP) to calculate the OPD for a change in meniscus position. This was

accomplished by using procedures for data collection associated with

the Hartmann test (Chapter 3).

First, the meniscus element was moved forward and backward 2 mm

from the nominal zero setting. Ray deviation measurements were taken

using the Hartmann test at pupil locations near the optical axis. From
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these measurements, defocus calculations were performed to determine

the change in BFP for the forward 2-mm movement and backward 2-mm move-

ment. By comparison of the changes in BFP (see Fig. 3) for forward

and backward movements, it was concluded that the nominal zero setting

of the meniscus was in the vicinity of 46 mm. To determine a more pre-

cise figure the meniscus element was displaced 1 mm from the nominal

zero setting, and several ray displacement measurements were made at

position 9 in the pupil (Chapter 3). These ray displacement values were

then compared to values predicted for a 1-mm movement using the design

parameters of the generator. This was done using different values of

the nominal zero position in the vicinity of 46 mm. The measured

displacements agreed most closely with the predicted displacements for

a nominal zero value of 46.2 mm.

i. Systematic error

Since the variations of the measured ray displacement values

were within a ±1 pm range, the nominal zero position could be specified

as 46.2 mm ± 0.1 mm at worst. For a 1-mm movement of the meniscus, this

uncertainty corresponds to a ± X/130 uncertainty in the predicted value

at full f/6 aperture and ± A/200 at position 9.

b. Systematic Errors Associated with Micrometer Adjustments

in the Generator

i. Coma (doublet)

The tilt micrometer could be adjusted to ± 0.0001 in. This
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corresponds to a systematic error of ± X/200 at the full f/6 aperture.

ii. Astigmatism

The dial adjustment could be set to ± 0.01 division = 0.020.

Since astigmatism varied quadratically as a function of plate tilt, the

systematic error would vary linearly with the amount. Thus the system-

atic error was ± W22/25 at the full f/6 aperture, where W22 is the amount

of astigmatism in waves (i.e. for W22 = X/10 the systematic error is

X X/250).

iii. Defocus (relay)

The relay lens could be positioned to ± 0.00005 in. The asso-

ciated systematic error was X± /130 at the full f/6 aperture.
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CHAPTER 3

THE COARSE RANGE SENSOR

1. General

Several types of coarse range (geometrical) optical tests were

considered. Three of the most common are the Foucault knife-edge test,

the wire test, and the Ronchi test. Effectively, in each of these tests,

a particular type of obscuration mask (knife edge, wire, multiple wire)

is placed in the vicinity of the focal plane. We can then obtain ray

slope information (and, by integration, wavefront data) by noting the

mask location and parameters. However, these tests suffer from a common

flaw: the test mask must be rotated for nonsymmetric aberrations like

astigmatism and coma. Also, the pupil must be scanned to obtain meaning-

ful error measurements. Consequently, the Hartmann test was chosen be-

cause it is as sensitive as the above-mentioned tests, but it does not

require mask rotation and control. It also allows us to monitor any

point on the pupil that we wish.

2. The Hartmann Test

a. General Arrangement

In the classical application of the Hartmann test a mask of

precisely located holes is placed in the exit pupil of the optical sys-

tem. Each hole lets through a particular ray that converges toward

focus. Two photographic plates are exposed, one in front of focus and
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the other behind. By knowing.the distance between the plates and by

reading out on a comparator the positions of the rays on the plates, a

slope can be determined for each ray in the pupil.

This classical form of the Hartmann test is obviously not suited

to remote testing. However, as illustrated in Fig. 9, only a simple

modification is required. Plane A indicates the optical system exit

pupil. Lens B is positioned so that its rear focal point lies at the

system focus. At location C we have the reimaged optical system pupil

in collimated light space. In this relayed space we can sample a partic-

ular pupil location conveniently by means of a movable aperture. Any

departure from a perfect system wavefront will show up in the sampled

ray as a small angular deviation from collimated light. The slope error

in the system exit pupil at this corresponding point can be found

easily by multiplying the measured angular departure by the ratio of the

relay lens focal length to the system focal length. This technique

allows us to sample any pupil location we so desire and to use the full

energy spectrum available. We also have an increased measurement

A

C

Coils

Focal Lens B Lens D
plane Scanner Image

Reimaged dissector

System pupil

pupil

Fig. 9. Hartmann sensor configuration.
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sensitivity equal to the ratio of the system focal length to the relay

lens focal length.

i. Automatic readout

We are now left to read out the angular deviations of these

various rays. A suggested automatic technique involves the use of an

image dissector tube of the star tracker variety. The arrangement is

indicated in Fig. 9. The second lens, D, focuses a particular ray

bundle, which is sampled at its rear focal plane, at some position

off axis that depends on the slope error and the sampled pupil position.

The image dissector measures this off-axis location. This position,

divided by the focal length of lens D, is the magnified slope error at

the pupil position.

The dissector tube consists of a photocathode that has been

deposited within a transparent window. An electrostatic focusing system

refocuses the electron image produced by the sampled ray bundle within

or in the vicinity of a metallic plate containing a circular aperture

in its center. Those electrons getting through the aperture produce a

current. An orthogonal set of magnetic coils is phased 900 apart with

equal deflection amplitude thus producing a circular scan of the electron

image about the metallic circular aperture. Synchronous amplification

of the resulting signal is carried out at approximately the scanning

frequency. If the ray image is perfectly centered in its scan about the

circular disk, then there is no synchronous error signal produced. How-

ever, if the ray bundle is displaced, an ac error signal is produced
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with some particular phasing depending upon the ray position. From

this we extract an x,y-axis error signal that can then be applied as

an offset signal to the deflection coils until the error signals are

nulled. Knowing the calibration on the offset deflection signal, we

obtain the ray position.

ii. Simulated automatic readout

This scheme has been simulated in the laboratory with the use of

a Risley prism scanner, a movable pinhole, and a standard photomultiplier

tube (PMT). This is illustrated in Fig. 10.

x,y pupil scanner

Risley x,y
D prism B positioner x

Syne

Aberrated f y
star image A Chopper Null

Sync. r meters
motor me

Reimaged
pupil

Fig. 10. Laboratory Hartmann test simulator.

Lens B focuses a particular ray bundle on or near the pinhole. This

diffraction image is spun about the pinhole by a Risley prism whose

orientation has been adjusted to give a circular spin diameter equal

to the pinhole diameter. A mechanical chopper driven by the prism motor

at 30 Hz gives a reference signal phased on the x axis. Behind the

pinhole is an EMR 9858 PMT. As the image is moved around the pinhole,

any offset produces a 30 Hz variation in the PMT output current. As
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illustrated in Fig. 10 this 30-Hz signal is preamplified and converted

into a voltage signal. The voltage signal is then fed into a syn-

chronous amplifier that first filters and amplifies the incoming signal

and then splits the signal into two identical components 900 apart in

phase. Each component is connected to the input of a phase-sensitive

demodulator where the signal is mixed with the reference voltage signal

to produce sum and difference currents. A filter at the output of the

phase-sensitive demodulator rejects the high-frequency (sum) frequencies

and passes the zero or dc difference component corresponding to the

component of the signal spectrum at the reference frequency. This zero-

frequency current is the error signal output. We have two of these:

one in phase that indicates the x-axis displacement, and a quadrature

signal that indicates the y-axis displacement. By moving the collection

pinhole we can first zero out the x-error and then the y-error signals,

read the micrometers, and calculate our wavefront slope errors. Figure

11 is a photograph of the Hartmann test wavefront simulator being

evaluated by the aberrated telescope.

b. Theoretical Discussion

We have investigated several theoretical problems concerning

the Hartmann test. These include an examination of the effect of

sampling aperture size in the exit pupil on measurement of primary aber-

rations and detection sensitivity. They also include the basis for

determining the optimum size scanning pinhole for subsequent S/N ratio

calculations.
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Fig. ll. Hartmann test simulator and
aberrated telescope wavefront, simulator.
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i. Effects of sampling aperture on third-order aberrations

The lartmann test is used to measure the slope of a ray in the

exit pupil of an optical system. By integration we may obtain the wave-

front of the optical system under test.

Ideally, we would like to make use of information from one point

in the pupil, but since we are concerned about energy and diffraction we

need a finite aperture for each ray. The question then arises: How does

the aperture size affect our measurement of the ray slope, since we are

integrating over a finite area of wavefront? In the following discussion

we develop quantitatively a wavefront error measurement expression in

terms of relative lHartmann aperture size and aberration type. Diffrac-

tion effects are considered in ii.

The assurmption i's made that we have a mealurinl schem, thatl ii.ll

locate the centroid of the image ofJ the lartmann aperture. Thus we are

determining the average slope of rays in a Hartmann aperture and com-

paring it to the slope of the ray at the center of the Hartmann aperture.

The exit pupil of the system is illustrated in Fig. 12. In a

normalized system X2 + y2 1. The center of the Hartmann aperture is

located at (Rc, 4). Our analysis here restricts R c 1 - D, where D is

the radius of the lHartmann aperture. Obviously Y = Rc cosP + y;

X = R sin + x.c

If SxXY is the x-direction slope of the wavefront at X, Y, then

the average x-direction slope in the aperture centered around R , I isC
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Y

(Xi, Y)

Fig. 12. Telescope system exit pupil.

+D (D2_X2)i

f - 2  Sxxydxdy
- - -D - (D2 x2)
xX.Y. wD2

1 1

Likewise the average slope in the y-direction is

+D (D2-x2)l

fI f (Dx2) SyxYdxdy
-- D (D 2 x 2 )

11XiYi  D2

Now let us consider several' aberration types and their measurement

errors introduced in the Hartmann test.
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iii. Aberrations and measurement errors

Defocus

W = W20( X 2 + y 2 )

S
SxX = 2W20X

yXY - 2W2 0 .

In our small displaced aperture D,

W = W2 0(R c2 + 
2 + 2 + 2Rc [x sinD + y cos@])

SxXY = W2 0 (2x + 2Rc sin@)

Sf fSxXY  
- (2x + 2 Rc sin@)dxdy

xX.Y.
11 D2  TrD2

The first term integrates to zero and we are left with

SxX.Y. = 2W20Rc sinD = 2W20 Xi1 1

or

xx.Y. xX.Y.
ii ii

or the average x-slope in the aperture D is equal to the actual x-slope

at the center coordinate of D for the defocus aberration. Likewise,

yXiY. yX.iYi
1 1 1 1
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Thus defocus in the absence of other aberrations causes no shift in the

Hartmann image centroid.

Tilt

The wavefront aberration for tilt is W = WyllY + WxllX where

Wyll is a tilt of wavefront in the Y-direction

SxX.Y. Wx11(x-slope at XiYi)
1 1

W = W ll(R c cos + y) + W .11(R c sin + x)

S = - W
XXY aX xll

W dxdy =xll
XXY wD2  xll'

Thus,

= S
Xxy XxiYi.1 1

We see that in the absence of other aberrations a tilt causes no shift

in the Hartmann image centroid.

Astigmatism

The wavefront aberration for astigmatism is

W = W2 2p
2 cos 2 = W 22Y

2
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S . = 2W22Yi
Yi22

W = W22(y2 + Rc2 cos + 2yRc cosD)

S Y 2W2 2R cost = 2W22Yi + 2yW 22 + 2yW22

= J (2W22Yi + 2yW 2 2
)dxdy

YXY rrD2

The second integral is zero. Thus,

YY = 2W 22Yi = S
XY .22

1 1

Again astigmatism does not cause a centroid shift.

Thus far with defocus, tilt, and astigmatism we have seen that

the Hartmann centroid is not shifted due to the sampling aperture size.

We will see that this is not the case for third-order spherical aberra-

tion and coma. That is, the finite aperture in the Hartmann test intro-

duces a certain error of predictable form and magnitude depending on

the relative Hartmann aperture size.

Spherical aberration

W = W40 (X2 + y2)2

S = 4W4 0XiRc
2

Xi~i
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S = 4W Y.R
40 i cYX. Y.

In the Hartmann aperture

W = W4 0(Rc 2 + y 2 + 2 + 2RE[x sine + y cos]) 2

S - = 2W(R22 X2 + 2R
XXY  ax 40 c  c

Ex sin$ + y cos]) * (2x + 2Rc sin4)

/ / J J

4W4 0[xRc
2 + xy2 + x3 + 2X .x2 + 2Y xy]

+ 4XiW4 0Rc2 + (x 2 + y2 ) + 2Xix + 2YiY].

All odd functions integrate to zero as indicated by the /. We are left

with

x2dxdy

S = 8W 4X. + 4X.W R 2
8W40X i  

2  40 c
X.Y. wD2

1 1

J2 D
p2pdpde

+ 4X.Wi 40 TD2

Sx ' S + 2D2XiW40 + W40XiD 2 .
X~i40 40i~
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By symmetry

Y = S + 2D2Y.W + W Y.D2
YX.Y.140 40 1

XM

W 8 dX. + dYMeasured x x S dY
YX.Y.0 i 0 i 1

WMeasured = W40(XM2 + M2) 2 + 3W40[D2] - [XM2 + yM 2

Measured = W40RM' + 3W40D 2RM2 .

We see that when we measure spherical aberration with a Hartmann

array we get an additional term in our measurement, which takes the form

of a focusing error with coefficient 3W40D2 . However, since we have

obtained the functional form of the associated error we can now apply

this knowledge to a correction term on our defocus measurement and thus

compensate for the finite Hartmann aperture size.

Coma

W = W31p
2 cost = W31 (X

2 + y2)y

S 3W 2W3 1XiYix.. X 31 1

S = - W31(X. 2 + y 2) + 2W Y 2

YXiYi
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S -- 2W (xy xR cost + yR sine) + Sx Y ax 31 c c x.y.
11

Since the first three terms integrate to zero

S= S
XY X.Y.

1 1

Thus there is no x-component of slope error. However,

S = 5S + W31(p2 + 2R x sin$ + 3Rcy coso)
YX ay YX.Y. c

1 1i

+ 2W31(y
2 + 2yRc cost).

Integrating we obtain

S = S + W D2
yXY S .Y.+ W31D2

Since
X Y

WMeasured = I S + f1 S dY

0 0

WMeasured = W31(XM2 + YM2)M + W31YMD2

We thus see that in the case of coma, a finite size Hartmann

aperture will introduce an error that takes the .form of a tilt aberra-

tion. This information can be used as a correction on tilt measurement.

We see from the preceding discussion that if we are measuring

the Hartmann centroid the only third-order aberrations that introduce

errors are spherical aberration and coma, and that the amounts of error

are extremely small. We could predict the amounts of error for these
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aberration measurements by using the error formulas developed. We can

also take advantage of our knowledge of the aberrational form of error

to eliminate it. If we were monitoring an active system and were looking

for changes, and we measured a change in spherical aberration we would

also be able to predict the defocus type error that would be associated

with it and thus not confuse it with an actual defocus change. The

same argument holds for the coma and tilt error.

iii. Optimal signal recording geometry

In order to calculate the signal generated by the slightly off-

center diffraction image of a sampled bundle of rays, we must know the

nature of the diffraction pattern formed on the image dissector's face,

the impulse response of the tube, and the dimensions of the collecting

aperture within the tube. The convolution of these three quantities

will give us the normalized amount of energy passing into the dissector

for a given diffraction image collecting aperture displacement. From

this convolution curve we can determine the change in signal current for

a change in position of the diffraction pattern on the tube face due to

a slope error. Thus we will be able to make signal predictions based

upon star source characteristics, f/No. of sampled pupil area, tube

scanning aperture sizes, and tube impulse response characteristics.

Referring to Fig. 10 let D be the sampling aperture size, f the

lens focal length, and X the average wavelength of the collimated light.

The intensity distribution in the image dissector collecting plane for

a unit amplitude disturbance is
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TDr 2

n2D4  2J1 )
(r) -16 2f2  rDr

The impulse response of the dissector tube is approximately Gaussian and

can be written as

wr 2

1 2c
G(r) = 2 e

Here a is the Gaussian width of the response. The collecting aperture

can be represented by H(r) = circ(r/Z/2), which is a function such that

l(r) = 1 0 r s

H0(r) = 0 r >

The energy getting through the aperture for a displaced diffraction image

is

L(r) = I(r)*G(r)*H(r),

where * is convolution, and r is the coordinate of the diffraction

image.

Taking the Fourier transform (F)

FL(r) = FI(r) * FG(r) * FH(r)

where

2 1 (SXf)2F(I(r)) D cos 1 Sff S~fD D
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when

S D
X f

F (I(r)) = 0 when S > X

FG(r) = e

FH(r) = (-2 J 1 (S)
2

Multiplying and taking the inverse transform yields

S- I -1 S S 2L(r) = J (2Sr)J(S)e- cos - 1 ( dS2 10 C
0

where

D
E f

We have evaluated this convolution for a series of possible e

parameters, in particular for an image dissector with a Gaussian width

2a of 0.0035 in. and a collection aperture diameter.£ of 0.020 in. These

convolution data were then used to determine the peak-to-peak change in

signal per micrometer of displacement, the change in signal per arc

second deviation of the sampled ray, and a signal-to-noise figure of

merit as shown in Table III. (Signal current is defined as the
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peak-to-peak difference in the ac error signal generated by a ray dis-

placement. Noise is determined by the total current generated by pho-

tons passing through the collection aperture L.)

Table III

Hartmann test sensitivity values

% signal change S/N figure
EX D (in.) f (in.) per arc second of merit

0.01 0.1 10 4.3 3.2

0.005 0.1 20 6.0 4.1

0.002 0.1 50 7.2 5

0.0015 0.1 66 8 5.2

0.001 0.1 100 10 4.1

0.0005 0.1 200 11 2.9

By plotting the S/N figure of merit versus focal length (Fig.

13) we see that we do have an optimum choice of focal length. However,

the function is slowly varying over a large focal length range. The

real optimization choice should be made considering the displacement

stability of the coils, which can be relaxed at larger focal lengths,

and residual mechanical vibration problems, which become worse at

larger focal lengths. A good compromise for this tube is a focal length

of about 50 in.

iv. Signal-to-noise ratio for image dissector readout

Assuming we have optimized according to the above argument, we

can now calculate signal-to-noise ratios.
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Fig. 13. S/N figure of merit as a function of
focal length (image dissector tube).

For an extended red photocathode the total signal at the cathode,

for a zero magnitude Ao star, assuming a 700 cm2 sampling area collecting

aperture, is I = 0.50 x 10- 10 amps on the photocathode, which corresponds

to the maximum photocathode current the tube can handle. Now assuming

the parameter optimization as described in the last section

(Shot Noise) I N = eAfI

I N  = 0.5 x 10-10(2)(1.6 x 10-19)(1)

= 4 x 10-15 amps.

From above, for a 1 arc-sec detection, the signal is approximately 0.06

of the total current on the photocathode, I

I s = 30 x 10-13 amp
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30 x 1013
S/N 7.50 x 102 750,

4 x 10- 1 5

where dark current noise is approximately 10-16 amp for a 0.020-in.

aperture.

We compute signal-to-noise ratios for other.star magnitudes and

summarize the results in Table IV.

Table IV

Best signal-to-noise ratios for detecting a 1 arc-sec slope change

Magnitude S/N Detection certainty (%)

0 750 100

2.5 250 100

5 60 100

7.5 6 100

The above analysis has not considered noise problems associated with

deflection coils and field effects in image tubes.

v. Prediction of rms wavefront error aW from rms slope error aS

If the noise associated with each slope measurement is uncor-

related and has the same rms value at each measurement position, it can

be shown that in one dimension

n=K 2

(nl n)
oW = La K3/2

K 3/
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The rms wavefront error from all points in the pupil is aW, L is the

pupil size, K is the number of points sampled, and oS is the rms slope

error at each point.

If a dissector tube is used, such that the net rms position

stability is at least 3 Pm and the readout lens focal length fE is

approximately 60 in., then the value of aS = 2 x 10-6 rad = 0.4 arc sec.

For a reimaged pupil radius of 12.5 mm where 10 points are sampled across

this radius, the rms wavefront error would be expected to be

aw = 12.5 (2 x 106)(58/1000)2

0.006 pm X/100 rms.

The rms wavefront error associated with using the dynamic Hartmann test

readout aboard the LST can be predicted. The wavefront error would be

determined to A/100 rms by using a 12.5-mm reimaged pupil radius where

10 points are sampled across a pupil radius if (1) at least a fifth

magnitude star is used, (2) deflection coil and tube stability are

astability = 2 pm, and (3) short-term vibrations in the LST are less

than aW < 0.2 arc sec, referred to the detector plane.

c. Experimental Evaluation of Hartmann Test

i. Experimental arrangement

The laboratory model of the Hartmann test (HT) figure sensor

was designed and constructed using the simulated star tracker readout

mechanism previously discussed. The laboratory figure sensor and the

wavefront error simulator are pictured with the associated electronics



45

in Fig. 11. The entire bench arrangement was isolated from vibration

from the laboratory floor by using a sand-filled optical bench that

floated on inner tube pods. The Risley scanner was isolated from the

bench by being positioned on a sturdyplatform that straddled the bench

but did not come in contact with it. Further vibration isolation for

the scanner was provided through the use of soft rubber mounts. The

reference signal to the synchronous amplifier was produced by a laser

beam incident on a photodiode, which was pulsed off and on by a chopper

blade mounted on the Risley scanner .motor.

All important parameters for the wavefront simulator are dis-

cussed in Chapter 2. The laboratory HT parameters are discussed below.

For information clarity it is helpful to refer to Figs. 10 and 11.

Lens A was a high-quality telescope objective with a 220.3-mm

focal length. The reimaged pupil of the aberration generator, with a

measured diameter of 18.34 mm, was located approximately in the rear

focal plane of lens A. A 2.5-mm-diameter sampling aperture was located

in this plane and could be positioned while scanning the pupil with an

accuracy of ± 0.0005 in. The Risley prism consisted of two matched

1-min-deviation prisms independently mounted in a scanner device such

that their respective angular orientations could be adjusted and locked.

This provided for the introduction of variable angular deviations, so

that the diffraction pattern of the sampled ray bundle could be adjusted

to scan around the perimeter of the detector pinhole. The readout lens

B consisted of two elements, a 297.54-mm focal length telescope

objective and a microscope objective. The conjugates of
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the microscope objective were adjusted to give 5.0 X lateral magnifica-

tion of the ray displacements in the rear focal plane of the telescope

objective. This combination yielded a lens B effective focal length of

1487.7 mm. This arrangement had two advantages. First, it shortened

the system. Second, the microscope objective was baffled and contained

in a tube so that stray light on the PMT was minimized. The readout

pinhole was placed at the effective rear focal plane of lens B and had

a 0.3-mm radius. It was mounted on an X,Y stage and could be moved by

micrometers with dial indicator readout to ± 0.25 pm.

ii. Experimental procedure

Preliminary parameter study

According to predictions made in the parameter study on the

star tracker tube, the best S/N ratios could be obtained by using a

readout lens B that caused the diffraction size of the sampled bundle

to be slightly larger than the size of the detection pinhole aperture.

Several experiments were performed using various collecting pinhole

aperture sizes for the simulated star tracker readout. It was found

that under laboratory conditions pinhole sizes from approximately one-

half to two times the Airy disk size gave the best angular sensitivity,

with variations in this range being indistinguishable. Thus the 0.3-mm

radius pinhole was chosen to be used in conjunction with the lens B

readout focal length of 1487.7 mm and sampling aperture of 1.25-mm

radius. These parameters were also compatible with results of the star

tracker simulation parameter optimization study.
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Measurement stability of ray bundle deviation

It was found that the micrometer position for nulling out error

signals for a particular sampled ray bundle had a short-term readout

repeatability over the course of a few seconds of ± 1 pm to ± 2 pm and

sometimes worse depending on the time of day and the particular day.

Also, over the course of 15 minutes it was not unusual for the null

position to drift ± 10 pm. The first problem was associated with re-

sidual random vibrations and the second with slower term variations in

the index of the optical path due to air movement. To cope with the

first problem experiments were run at those times when vibrations appeared

to be near the low levels. Furthermore, several readings were taken at

each point for averaging purposes. To deal with the slow drift problem,

large portions of the optical path were enclosed, and laboratory air

movement was kept to a minimum. Any residual drift was monitored so

that ray deviation measurements could be compensated. This technique

is described below.

Procedure for measurement of ray deviations

With the aberration generator micrometers and indicators set at

the nominal zero aberration settings, the pupil sampling aperture was

set centered on the optical axis. The detector pinhole was moved until

the x and y axis error signals were nulled. The micrometer readings

were recorded,and the sampling aperture was moved to another position

where the micrometer readings for the null setting were again recorded.

This procedure was repeated for preselected pupil locations so as to
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scan the pupil diameter at equal increments out to the limiting point

in the pupil, such that the sampling aperture remained completely filled

(i.e., out to 7.94 mm in the pupil radius of 9.17 mm). To compensate

for the slow drift of the star image, the central position of the reimaged

pupil was chosen for referencing, and between each sampled pupil posi-

tion ray deviation measurement, the reference ray position measurement

was taken. The appropriate reference ray deviation position was then

subtracted from each of the sampled position ray deviation measurements.

This procedure produced a nominal zero aberration baseline of ray devia-

tions measured at known pupil positions where the star source drift was

eliminated.

Next a micrometer adjustment on the aberration generator was

made to introduce a particular known amount of one of the low-order

aberrations. The data collection procedure used for the baseline

measurement was then repeated at the same preselected pupil locations.

Again, star source drift was compensated by monitoring the central

pupil reference ray positionbetween each pupil position ray deviation

measurement.

The aberration change ray deviation measurements were then sub-

tracted from the baseline ray deviation measurements. This procedure

resulted in a data set of aberration change ray deviation measurements

at the preselected pupil locations.

These data appear in Figs. 14a, 15a, 16a, and 17a for different

types and magnitudes of aberration change. Plotted with the measured ray

deviation data are the theoretical predicted ray deviations based on the
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Fig. 14. Pupil position vs (a) ray displacement and (b) optical path
difference for defocus plus spherical aberration.
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nominal parameters of the system. These theoretical values were ob-

tained by differentiating the expression for OPD given in Chapter 2 and

multiplying by the focal length of lens B.

iii. Data reduction procedure

In order to compute OPD changes from the measured ray deviation

data the following procedure was followed.

The data on each of the graphs in Figs. 14a, 15a, 16a, and 17a were

fitted to a low-order polynomial expression of the form E = a + br +

cr2 + dr3 + er4 + fr5 where e is ray displacement in micrometers and r

is sampled pupil position in micrometers. This yielded an analytical

expression for ray deviation versus pupil position. To determine the

OPD change this expression was divided by the focal length of lens B

and integrated to obtain the expression for OPD

OPD = ar + + r 2 + - r 3 + r + r5 + r
f 2 3 4 5 6

These data were then plotted in Figs. 14b, 15b, 16b, and 17b

along with theoretical OPD's calculated from the equation developed in

Chapter 2 for the wavefront error simulator.

iv. Discussion of results and errors

From an examination of Figs. 14a through 17a on ray displace-

ment measurements, it is evident that the ability to measure ray devia-

tions for the low-order aberrations was on the order of ± 1 pm compared

to nominal predictions. Calculations on rms ray deviation measurements

compared to the nominal predictions show a range of arms = 1.4 um in
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the best case to arms = 2 Pm in the worst case. These correspond to

rms angular errors of 0.2 arc sec and 0.3 arc sec, respectively.

A calculation of photon statistical S/N based upon the simulated

star radiant output and PMT characteristics showed an expected S/N

ratio of 4 for this order of angular sensitivity. As discussed pre-

viously, short-term vibrations under best conditions permitted ± 1 pm

position measurement repeatability. Thus our measurement sensitivity,

although approaching the statistical limit, as indicated by the nominal

rms deviations calculated above, was indeed limited by residual labora-

tory vibration conditions.

From an inspection of the OPD's obtained by smoothing and inte-

grating our ray displacement data (Figs. 14b, 15b, 16b, and 17b), we

see that our measured values agree with the nominal predicted values

to better than an indicated X/100 in the best cases and to X/40 at

worst. It must be remembered that the nominal predicted curves have

aberration generator systematic errors associated with them, which are

discussed in Chapter 2. In addition, the vibrational noise contributes

a X/150 rms associated statistical error to the measured data. Con-

sidering these errors, it is reasonable to state that the aberrations

were measured to the order of X/50 to X/100 using the Hartmann test.

A more precise determination of sensitivity was influenced by residual

laboratory vibrations and the systematic error associated with the

wavefront error simulator calibration.
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CHAPTER 4

FINE RANGE SENSORS

1. The Zernike Test

a. General Discussion

The usual interpretation of the Zernike test is based upon the

spatial filtering concept. Consider a disturbance e i ( x ' y ) in the

pupil of an optical system as shown in Fig. 18. If the aberrations are

very small then we can represent eio(xy) = 1 + iP. The important ob-

servation is that the aberration information and pupil information are

900 out of phase.

Aberrated wavefront

Transform
plane

lens C Intensity
readout

Zernike Reimaged
disk filtered

pupil

Fig. 18. Zernike phase contrast test arrangement.

If, in addition, the aberrations are of a high spatial frequency type,

the Fourier transform of the pupil function consists of a zero order,

due to the pupil aperture, and a separated higher order spectrum 900
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out of phase and separated from the zero order (see Fig. 19). We then

argue that a phasedelay of 900 introduced by a phase filter on the

zero order will bring the higher-order information in phase with the

zero order. Lens C then re-transforms the filtered spectrum with the

aberration information and pupil effects in phase so that the intensity

pattern in the pupil contains a modulation proportional to the phase

error in the pupil for small aberrations. Furthermore, by attenuating

the zero order, the modulation effects can be improved.

Zero order
at a phase of 00

t
Higher order spatial
frequencies at a phase of 900

Fig. 19. Spatial frequency distribution.

In the situation where we are looking for low-order aberra-

tions, such as may occur in figuring errors, thermal deformation errors,

or misalignments, the problem is somewhat different. In this case the

magnitudes of the aberrations are not so small that only a first-order

expansion is permissible and, secondly, the aberration information is no

longer separated out from the zero-order diffraction pattern. These

considerations lead to a different interpretation of the problem

as well as a more general formulation of the design of the Zernike disk
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itself, in terms of its size, the optimum phase shift, and the optimum

attenuation. Zernike did some work on the low order problem in terms

of a Zernike polynomial representation of the aberrations. However, he

considered only the first-order term in the expansion and did not gener-

alize the problem considering obscuration effects. He also assumed the

n/4 phase shift and did not. consider optimization of the disk parameters.

What follows is a general development of the effects of a Zernike disk on

the reimaged pupil. We show the relationship between disk size, phase

shifts, and attenuations, and how these parameters affect signal-to-noise

ratio, fringe visibility,and the intensity in the reimaged pupil with and

without various types of aberrations. We will also discuss the fabrica-

tion of the disk, effects of fabrication errors and tolerancing.

b. General Development of Intensity Equation for Reimaged Pupil

In Fig. 20 plane A represents the exit pupil, with fractional

obscuration e of an optical system with radius a and focal length f. The

Reimaged pupil

(p,O)  (r/ ) (pO)

lens B
A B C

Fig. 20. Pupil geometry for Zernike equation derivations.
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exit pupil contains a general wavefront represented by eic(Pe). The

normalized coordinate p ranges from e to 1. The pupil amplitude is thor

represented by

P =e n(e ( l-
0 2

where

]1(2-) = 1 < 1
2x x

=0 > 1.
x

At plane B, the Fraunhofer plane, the amplitude of the diffrac-

tion pattern P is

P KIPo'

where

1 2T

0 = K1  e e-i[vpcos(e-)] pdpde

0 0

ia 2  27 a
1 Xf V -

and r, p are coordinates in plane B.

In plane B we place a circular mask of radius b, which produces a

phase shift a within b and contains an amplitude attenuation (or relative

amplification factor) T outside b. Thus, after passing through the mask

P, the amplitude diffraction pattern becomes
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K 1 l 1 (- K1 2b] + 10 2b

By rearranging we obtain

P' = K1 + (e 11() K TP + AeK1 0

where

AeY = e - T

A2  = 1 + T2 - 2T cos

sino
tany = s

coso-T

It is at this point that we make a very important observation. The first

term in the above expression for P' is an attenuated representation of the

diffraction pattern of the system under test, while the second term

represents an attenuated phase shifted core of the diffraction pattern,

where A determines the attenuation, a the phase shift, and b the size of

the core. As we will see, this results in an expression for two-beam

interferometer wave interference, where the first term transforms to the

system test wave and the second term transforms to a self-generated

reference wave.

This field P' then passes through lens B and at plane C (the con-

jugate plane to A) the amplitude of the disturbance PO is

P i = K2
0 K2P'



60

where

0 21
p T ie -iwr cos (-6')

O 0

2Ta.p K i 2ra
w K = q =X f 2 Af q

We are assuming lens B has an aperture sufficiently large to accept all

scattered rays. Integrating we obtain

o 4T q2K1K 2 T e~(XY)( ( [) + Ae K1 K 2

- q2 1 2l 0 i

where

,b 2r

SJ ] o  f0
e-iwr cos( -O')rdrdp

0 0

is in general a complex function X(p,p)

X(p,p) = Q(p)e

Q(p, ) = /Re X2 + Im X2

(p,9) = arctan Im X(p,)
Re X(p, )
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Substituting we obtain

!P0  = T (-X) A Q(p)e

What we have.here is an expression for a two-beam interferometer

where TPO(-X,-Y) is the test beam containing the pupil aberration infor-

mation and the second term represents a reference wave whose amplitude

a2AQ(p)
A2f2 and phase y is determined by the Zernike disk properties. The

factor *,as will be seen,repre.sents the effects of the system aberrations

on the reference wave. As it turns out, if b is chosen small enough, I

is practically constant so that its effect is essentially one of shifting

the intensity distribution by a constant. We will come back to the.

evaluation of X(p) in the next section.

Multiplying P0i by its complex conjugate yields the intensity of

the reimaged pupil for a unit amplitude pupil function

i i* Q2 12A2 2TAI(P*) P P x Poi* 16Q2A2 F 4? sin(E+i- (-X,-Y))0 0 16X4F#' 42F#2

(holds for c 5 p < 1)

where

= y - w/2

) A2q2 (p, O)
I(p,=) 16X4F#4 e > > 1

Our development here gives us an added bonus in the intensity

prediction outside the.pupil.
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The question now is: How to choose the values of T and a to

optimize the Zernike test performance? If we desire to operate on the

midpoint of a fringe so we have maximum range (~- ± quarter wave) we

want to choose = 0. If this is the case we then have y = n + /2

= T/2. Then from tany = sina/(coso - T), we have the constraining

condition that T = cosa, and thus A2 = - T2 = sin2a. Now we have

to consider fringe visibility. The visibility

S= 22QAT (T2 + 2A2  Qsin2o
16X4F#4 4A2F#2

+ 1 +6X4F# + + - 16 #4 cos2 .

By differentiating and setting equal to zero, we obtain the condition for

maximum visibility

1 Q2
cos2a = -

1+ 

Thus, by picking a to satisfy this equation and the transmission to

satisfy the equation T2 = cos 2o, we guarantee a fringe visibility of

unity and an operating point that gives us maximum range. We see that
the choice of a depends upon Q , which depends upon wavelength,

system F number, and the size of the Zernike disk. As we will demon-

strate later, the effect of a large Zernike disk is to yield a reimaged

pupil that has large intensity graduations for a zero-aberration condi-

tion. A large Zernike disk also tends to mix aberration information into
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the reference wave. Smaller disks tend to yield a uniform zero-abberation

profile with little aberration mixing in the reference wave. However,

the transmission factor is small and more energy is wasted. In Table

V we have calculated results for the optimum phase shift and transmission

required for several Zernike disk radii, corresponding to about 1/10 to

1/2 the size of the diffraction pattern of an f/12 system operating at

a wavelength of 0.6 pim, making use of expressions for Q derived in the

following sections. Considering signal-to-noise requirements, pupil

profile, and aberration mixing, the disk corresponding to about 1/3 the

size of the central diffraction lobe appears to be a good compromise.

Table 5

Zernike disk design parameters at 0.6 pm

Disk size (pm) Phase.delay a (in X) T2(%)

2 0.228 2

3 0.206 7

4 0.189 13.8

5 0.178 18.8

c. Derivation of the Effects of the Zernike Disk on the
Reimaged Pupil

The effect of the Zernike disk on the reimaged pupil manifests

itself through the term X(p,e) = Q(p,e)ei$ (P,8). One can evaluate the

integral
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b 2Tr

X(p,e) = f U(rt)e-iwr cos( -O)rdrdp,

O 0

where U(r,*) is the amplitude diffraction pattern, numerically using a

good deal of computer time. We have however, taken the approach of

developing analytical expressions for both U(r,i) and X(p,O). The work

has provided accurate analytical expressions for U(r,) for aberrations

of up to .22X and accurate analytical expressions for X(p,0) for Zernike

disk sizes up to 2/5 of an Airy disk size. The range of accuracy could

be improved by expanding the expressions developed to include higher

orders. The derivations have included the effects introduced by a system

obscuration.

First we develop analytical expressions for the dif-

fraction pattern amplitude U(r,4), which includes aberration effects and

the effect of a circular obscuration. The derivations that follow are

done in terms of special functions AN(v) called Lambda functions. The

Lambda function is defined such that

SJN (v)
N(v) = 2NN! N

where JN(v) is an Nth order Bessel function. Using the recursion formula

for Bessel's function one can show that

V2
A (v) A (v) A (v)N N-1 4N(N+1) N+1l
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where +-+ represents a two-dimensional Fourier transform, and

v = 2r 1

r = /X2 + y2

Xa
0
Af

Ya
Y_ o

We can also show that

dAN(v) 1 AN+ 1 (v)

dv 2 N+1

d2AN() . 2N+

dv +2 N N+1IV) - N (V )

d2N(V 1 A N+I
dv2 2 N+2(v) N+1

1 i N+2.()
7" AN+1 (v) = 27cos - v N+2

a2  (2w 2 AN+ 2 (v)
AN+l ( v ) = - (-cos2p) N+2

+ (21)2 2N+3 A, cv) - A cv].
2 (l+cos2 N+4 N2 N+1

(B)
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The approach is now as follows. The pupil function ei  is

expanded to the second term, 1 + io - 1- 2, where

= W1 1pcosO + W2 0p 2 + W4 0 4 + W60p 6 + W3 1p3 cosq

+ W22p2cos 24.

This is a power series representation of the phase in the pupil where W11
is a tilt effect, W20 is a defocus effect, W40 and W60 are spherical

aberration effects, W31 is a coma effect, and W22 is an astigmatism

effect. This expansion is substituted into

1 27

U(r,K) = K1  e jeie-i[vpcos(e-)] pdpde

E 0

where

ei4 = 1 + i - 2/2.

After substitution we arrive at a series of transforms of terms of the

form p 2N+McosM, where N and M take on various positive values. We can

show that

p c2N+Mos = 1 - N(-p 2 ) + NN- (-p 2 ) 2

N(N-1) (N-2) (l-p 2) 3 +- 3. + ... cosMp.

By taking each term in the power expansion and putting it into the above

form, applying the Fourier transform relationship (A) and finally making

use of the derivative relationships (B),we arrive at the following
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expressioin for diIIffraction implitlde in inue 

LIU = U0 + U11 + U2 0 + U4 0 + u31 + U2 2 + UInteractions

where UInteractions represent cross terms resulting from the ¢2 term in

the pupil function where

U = 1[AI(V ) - E2A (EV)] --diffraction pattern of the

obstructed aperture.

2rr
K =

Defocus:

U0 2  = l(iKW 2 0)[Al(V) 2 - ( 1() - A2(cy

HK2W 2
2 0 [Ai(v)- 2 (V + (v) A (v)
S 2 1 2 A3

2 (cv) 2(Ev) + A V

Third-order spherical:

U4 0 =. n(iKW4 0 2Al (v) + 3(v)

- 6(A (EV) - A 2( + 3 (v))]

- K2W402[ (v) - 2A 2 (v) + - A3 (v) A4 (v)

+ A5 (v)v) - 2A 2 (

+ A3 (ev )- A4 (cv) + 1A5 (Ev)
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Tilt:

11  = (iKW1 1)(iv cos) 1 A2 (v) 4 -A 2 (E)]

- K2W 2 ()-1 A (v)

2 1 1 -2 l 2  2

+ (V) - A2 v) cos2P

- 1- 2 ( 2 ( 1(ev) - A2 (cv))cos2i ]

Astigmatism:

U22 = (iKW2 2 ) - A(vl ![A(v) 1 2(v)cos2

4- [A1 (Ev) A + I[A (A)) + 2(EV cos2 P)

- K2W222 (v) - 3A2 (v) + 3A1 (v) + cos2p-

[2A3 (v) - 6A2 (v) + 4Al(v)]

+ cos4[2A3 (v) - 3A2 (v)+ A() ]

- E6 A3(ev) - 3A2(cv) + 3Al(cV) + cos2*-



69

I2A3 (I v) - (A 2 (1 ) t 4A 1 ( v)

+ cos4 [2A3 (Ev) - 3A2 (sV) + A (ev)

Coma:

U3 1 = 2(iKW3 1 )(iv cos*)B$ A2 (v) - 2 A3 (v)

-E6 A2 (v) - 1j- 3 (V))

K' 1 3 4(v)
4 W3 12 A(v) - 2 (v) + A3 (v) 4

+ cos2 1 (v) - 2A + A 3(

+ 8((A(E) - A2 (Ev) + A 3 (v)

+ cos2* A(Ev) - 2A2 (EV) A (EV)
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3 KINTERACTION = -KW20 40 - A2 (v) + A3 (v) - 4(v)

- E Al 2V) 3 4()- A2 (v) + A3 (cv) - A4 (v))]

- WK
2 W1 1W2 0 (iv cos ) A2 (v) - -2 A3 (V)

- A2(sV) - 3

ik 2  A (V)
31W11 2 0 2 2  (A 1 2 3 A( (

+ COs6 [A, () - (v) + A3 (v)

1 3
- E6 v) - A2( s) +

+ cos2 v 2 2(cv) + A2

A2 (V) A3 (v) A4 (v)
- iK2 Hv cos(W 1 1 W4 0 + 2 0 W 31) 4 6 + 24

8(A 2 (Ev) A3 (Ev) A4 (Ev)
46 24
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Si2W40W3 Vv )  A3 (v). A4 (v) A(v)

/,(V) A3 (ev) A4 (Ev) A (,))
S102 4 5

4 4 8 40

11iK2WllW22 [(v) + 3vA2 (v)) cos + (vA 2 (v) vA3 (v)) cos3

S (-vA 3 (ev) + 3vA2 (Ev)) cos + vA 2 (EV) 3 (v) cos3

iK2 HW W
16 3A2 (v) - 2A 3 (v + 4 (v) v cos + - A3 (v)

+ A4 (v) v cos3P

- 8 3A2 (v) ' 2A 3 (Ev) + . A4 (Ev) v cos

(EV) - 4 3  1 A4 (cv))v cos3iP]

The above expression enables us to determine the diffraction pattern

amplitude in the presence of third-order aberrations less than quarter-

wave in magnitude, where the effect of a circular obscuration has been

included.



72

We now want to determine the analytical expression that describes

the effect of the Zernike disk on the reimaged pupil. We do this by sub-

stituting the previous derived expression for U(r, ) into the integral

expression for X(p,O). We then make use of the fact that the A functions

can be expanded in a power series where

A2V2 ,4V
4

AN-1(eV) = 1 - 4 + 2 +
16N2(N + 2)

We apply the three terms of the expansion to the unaberrated pupil Uo,

and the quadratic approximation to the aberration terms. We also make

use of the recursion relationship for Bessel functions

2N JN(V)
JN-1) N+l v

and the integral relationships

2rr

I cosMOe ivpcos(o d = (-i) 2T J (vp)cos M ,

0

and

1
I v+l 1

S J (vp)dp = J (v),
v v v+1

0

After a good deal of tedious manipulation and evaluation we obtain

X(p,O) = Xo( ' ,()) + XAb(),,o),



73

where X (p,0) is the effect of the Zernike disk on the unaberrated pupil and

XAb(P,0) is the effect rendered on the aberrated wavefront

Swb 8 2b2  2 
(  wb) wb

wb 8 1 2 w-

2r 2b 6q4 r J1 (wb) 4J2(wb) 8J 3 (wb)

192 wb w2b2 + b3

x (p,) - b2iKW 1(wb) b2q2 2 J (wb) 3 (wb)]

Aberration( ) 2b 0 wb 12 (w 2b2 2 wb

SJ 1 (wb) b2 2  2J2 (wb) J 3 (wb)

20 2wb 12 w2b 2  wb 

S[J(w b 22 ( 2 (wb)

- b2,2K2202 - wb 16 J2 (wb) wb)

+ b2 ff2K2E6W 2[J1() b2 g 22  J 2 3 -W-+ 2r 2b 2 KW 1 (wb b2  2
20 3wb 16 (wb J2(wb) - wb
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wb) b22 2 2J2(wb) J 3 (wb)

rJ(wb) b 2  2 j2 (b)

- i2I 2 b2 KW2 S "6  2- - wb

b2.f22K2W 2 Jt -(wb _b2 2 2 (wb) - 3(
40 5wb 24 w2b2 J2(wb) wb

Ji1(wb) 2 2 2 (wb) J3 (wb)+ b22K24 2 o b2 2 2
04 wb 24 wb

iq27 2 KW lcos b3 + q2b5 2 J (wb) -

2(wb 2b 2 (wb)
4wb 48 J3(wb) wb

- b2  K2W 1 b2 2 (2 J3 (wb) b2gb2 2 b122 J 2 (wb) - wb + cos2 J3 (wb)2 11 b 12 wb 24wb

J 1 (wb) b2s2 2 J 3 (wb)

2wb 12 W2b2 wb

+ cos2a b 2 42 92 J 3 (wb)
24wb 3
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iq2 2KW3 cos 6wb b3 + 2b J3 (wb)- 2 wbb)
wb 64 2b2  J3 (  wb

2J1 (wb) q 2g 2b5  2 J2 (wb)

- iq23KW3 lcoseG wb b3 + 4 =wb J 3(wb) - wb

K2 2
3 1

2b2  (wb) b 2  2 3 (wb(wb) + cos2 b2q2J 3 (wb)

2 L4wb 20 2b2  - wb 40wb

E8  Jwb) b 2 E2  2 (wb) 3 b) + co s 2 0 b22 J (wb)
4wb 20 w 2(b) - wb + wb 3

(b2J (wb) 4 2 J 3(wb)
L_- J _ (wb) + cos2e b q (wb)

2wb 12 w2b2  2 wb 24wb 3

(b2.J1(wb) b4g2  2 J3 (wb)\ b4q2E2j 3(wb)

2wb 12 w2b2 J2(wb) - wb + cos2 3wb

Sb2J l(wb) b q2 2  2 (wb) b q2_2- 3wb 16 w 2(wb )  wb) + cos2 24wb J3 (wb)

plus cross terms.
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This equation has been programmed and the data run to obtain

X(p,e) for cases that show the effect of the Zernike disk radius on

X(p). As stated before, this information was used to calculate a and T

and is tablulated in Table V. These data were then used to obtain the

no-aberration profiles for the reimaged pupil, which appear in Fig. 21.

These vividly demonstrate the tradeoff between disk size and pupil uni-

formity. For an f/12 system operating at an effective wavelength of

0.6 pm, a 3- to 4-Pm Zernike radius appears to be a reasonable compromise.

0.5 -

0.4

0.3

0.1

0 0.4

Normalized pupil coordinate

Fig. 21. Reimaged pupil through Zernike disk (no aberration).
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d. Effect of Zernike Disk Size on the Reference Wave
Characteristics in the Presence of Aberrations

The general equation for interference could, theoretically, be

used to calculate the unknown system aberration, 4, from intensity mea-

surements across the pupil, for any size Zernike disk. Of course, the

process would involve a complicated interactive approach to obtain 4,

since both Q and 4 are, in general, functions of the aberration 4. In

other words, the reference wave amplitude and phase are, in general,

affected by the aberration, and this effect must be taken into

consideration when the intensity modulation in the reimaged pupil is

analyzed. However, if the size of the Zernike disk is restricted, the

reference wave amplitude variations can be kept within an acceptable

departure from the amplitude of the nonaberrated reference wave, and

the reference wave phase variation can be restricted to a constant shift

plus a small linear variation, thus simplifying the interpretation of

the intensity profile of the reimaged pupil.

Reference wave characteristics were determined from the derived

equations for X(p,), assuming an f/12 system with an obscuration ratio

of 0.4 operating at 0.6 um wavelength. Zernike disk radii of 2, 3, 4,

and 5 Pm were used for the analysis. The primary consideration was to

determine the effects produced by the various size disks on the reference

wave as a function of the presence of different low-order aberrations.

The most important results of this investigation are presented below.

It was found that the primary effect produced by the aberrations

mixing in the reference wave was on 4, the reference wave phase. The

aberrations that caused change in Q, the amplitude factor of the reference
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wave, were minimal and could be described, for the smaller disks, as a

small constant percentage reduction in the reference wave amplitude.

This amplitude reduction is due to the redistribution of energy out of

the core of the aberrated diffraction pattern. The effect introduced

by the larger disk (5 pm) showed departures from the constant percentage

reduction, but the overall change remained small when compared to the

variations introduced in the reference wave phase, i. Thus, for the

sizes considered, amplitude variations were considered secondary, and

the choice of the upper limit on disk size was dependent on the refer-

ence wave phase variations, which were taken as the primary indicator

of aberration interaction in the reference wave.

The interaction of an aberrated test wave with the Zernike disk

aZways produces a change in the reference wave phase p. For the even

aberrations (defocus, spherical, astigmatism) the change rendered on p

could be described, generally, as consisting of small nonlinear phase

variation superimposed on a rather large constant phase shift. The

smaller the disk the larger the constant phase shift, but the larger the

disk, the greater the nonlinear phase variations. The odd aberrations

(tilt, coma) caused a linear phase shift in the reference wave with

superimposed small nonlinear variations. These effects decreased as the

disk size decreased, and went to zero in a direction perpendicular to

the orientation of the system aberration. The phenomena described

above are indicated by the variations in 9, which have been sketched

in Figs. 22a through 22e, for the various disk sizes and aberration

conditions.
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The largest amounts of nonlinear variation in i were produced

by the interaction of an astigmatic wave with the Zernike disk. If the

5-Pm disk were used to measure astigmatism of 0.2 waves, a X/40 astig-

matic type perturbation would be introduced into the measurement because

of the slight astigmatic quality of the reference wave.

0.08

2 0m
3 m

0.06 W 0. A

, 2 pm
Cd 3 Pm
~ 0.04 Nomlie 5 1

U 22
S0.02

0.00
0 0.5 1.0

Normalized pupil position p

(a) Astigmatism W2 2 (0 = 900)

Fig. 22. Variation in reference wave phase as a function of normalized
pupil position.
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0.10

2 pm
3 Pm

S0.08 5 ipm

W = 0.2 A

G 0.06

2 ,m

c 0.04 5 Pm

22

" 0.02 -

0.00
0 0.5 1.0

Normalized pupil position p

(b) Astigmatism W2 2 (0 = 00 )

Fig. 22. (Continued).
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0.06

0.04

0.02

S0.00

0 0.5 1.0

Normalized pupil position p

(c) SphericaZl aberration W = 0.1 X

0.08

0.06

CU

0.04

5 m

E 0.02
'. 20I I I I

0.00

00.5 1.0

Normalized .pupil position p

Cd) Tilt w = 0.1 x

Fig. 22. (Continued).
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0.06

0.04

>

0.02 -3 m

4) 0.00
0 0.5 1.0

Normalized pupil position p

(e) Coma W31 = 0.1

Fig. 22. (Continued).

Similar statements could be made about the nonlinear perturba-

tions arising out of the presence of coma or tilt. These effects are,

however, smaller than those caused by the astigmatic wavefront. The

analysis showed that if the Zernike disk size were kept to 2 pm or less,

the nonlinear perturbations of the reference wave phase p would be essen-

tially zero. However, if availability of light were a limiting factor,

the Zernike disk could be chosen to have around a 3-vm radius, with

the nonlinear effects amounting to no more than a few thousandths of a

wave for the largest aberration being measured. These nonlinear effects

would become vanishingly small, as the aberrations decreased to less

than X/20. Thus, if the Zernike disk size were limited to 3 pm, the

nonlinear variations in ' and the small nearly constant percentage re-

duction in reference wave amplitude could be ignored with better than
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A/100 accuracy over a + X/7 operating range. If the operating range

requirements were reduced, the disk size requirements could be relaxed

while maintaining better than X/100 accuracy. However, the constant

shift in reference wave phase produced by the even aberrations, and the

small linear phase shift in ', caused by the odd aberrations, must always

be considered in the interpretation of the intensity distribution. The

constant shift in ' caused by the presence of the even aberrations is

somewhat beneficial in that it effectively shifts the operating point

on the fringe in the direction opposite to variations caused by the

aberration 0. This effectively extends the linear range of operation

for the even aberrations. The linear phase variation in ' caused by

the odd aberrations does not complicate the data reduction since the

linear phase effects in 0 caused by wavefront tilt would have to be

considered in interpreting the reimaged pupil intensity distribution.

Figure 23a and b illustrates the modulation effects within the

reimaged pupil and the diffracted reference wave intensity outside of

the reimaged pupil. These.graphs were generated assuming the use of an

optimized 3-pm Zernike disk, testing an f/12, 0.4 obscuration ratio

telescope under different aberration conditions. The figures graphically

illustrate the small relative change of the reference wave amplitude

for the 3-um disk size as well as the excellent sensitivity of the test.

e. Tolerancing of Disks

As mentioned before, the ideal transmission and phase delay can

be calculated from the equations developed for the Zernike disk.
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0.20 -

[-W = 0.0 - 20 = 0.10 A

- W 20 =0.01 A

0.15- W20 =0.05 A

W= 0.10 A

0.05

4-• -
Cm

0.0 0.5 1.0 1.5

S 0. 60 m, F/No. = 12. 000, b 3. 000, E = 0. 4000, = 0. 206 A T = 0. 205.
A= 0.60 vimr, F/No. =12.000, b = 3.000, c = 0.4000, o = 0.206 A,, T -- 0.2605.
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b

0.20 -

W - 0.0 40 = 0.10

.w
-=0.01 40 0 .05 A

40
0.15-

a 0.10 W = 0

40 = 0.10 x

W= 0

0.05 -

0.00 -I I II I i ,

0.0 0.5 1.0 1.5
Normalized pupil coordinate

Fig. 23. (Continued).
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Departures from the design values in the manufacturing process will re-

sult in two main effects. The first effect is a departure from maximum

visibility, and the second effect will cause a shift in the zero-aberra-

tion operating point away from the zero condition. Figure 24 shows the

effect on the visibility function V as a function of phase delay with

three different transmission values. It can be seen that the visibility

is indeed a slowly varying function and that for gross errors of phase

delay and transmission its change is not significant.

1.0

T2 = 0.04
T2 = 0.07025
T2 = 0.1089

0.5

0 0.10 0.20 0.30

Phase delay (waves)

Fig. 24. Visibility as a function of phase delay.
A = 0.6, c = 0.4, b = 3 pm.

The significant effect of fabrication errors is illustrated by

Fig. 25. Here we can see the shift in the operating point (the point

midway between the maximumi and minimunm of a fringe) due to departures

in phase and transmission from the design values. For example, if the
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0.05

T2 = 0.1089
T2 = 0.07025

I T2 = 0.04

. 0.00

0.05

I I l I , , I , , ,
Q10 0.20 0.30

Phase delay (waves)

Fig. 25. Operating point as a function of phase delay.
= 0.6, E = 0.4, b = 3 im.

phase delay upon manufacture was found to be 0.16 waves (instead of

about 0.21 waves, which corresponds to the 0.00 operating point) the

operating point has moved 0.05 waves from the symmetrical position.

The range in one direction has thus been reduced from 0.25 X to 0.20 X.

The prime purpose then of tight tolerancing will be to maintain a maxi-

mum range of operation (see Fig. 26). The other factor that influences

our phase and transmission tolerancing is bandwidth. The shift in the

operating point due to a finite bandwidth is ±+ A/2X0 at the edge of

the ba dwidth where X0 is the nominal design wavelength. In Table VI

we have tabulated the effects of error in the manufacturing process on

the range of operation for the Zernike disk. For the erosion process,

U~~
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I I

I Operating point

I I
I I

I I
e-x/4-P

Fig. 26. Illustration of optimum operating point.

with careful control, and a 20-nm bandwidth the range of operation will

be ± A/8 in the worst case. For testing a well-corrected system the

operating range can be reduced from ± 0.25 X to a smaller range and the

bandwidth can then be increased.

Table VI. Error budget for Zernike disk manufacture

Assign ± X/120 transmission = ±2%

Erosion range ± X/8 ± X/10 phase delay = + A/5
erosion depth

± X/60 bandwidth = 20 nm
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I'. Si, l--Lo-Noise Calculations

One can show that in making .a measurement the statistical signal-

to-noise ratio due to photon noise will be

(V) (AqTNatB)S/N = (2-3
(2)1 2AF/No.

where V, A, Q, T, X, and F/No. are properties of the Zernike disk and

the incident wavefront as defined before, N is the number of photons

per sec per cm2 per'R incident on the telescope entrance pupil, a is

the pupil area sampled, t is the sampling time, and B is the bandwidth.

For a Zernike disk designed for E = 0,

A = 1 -

therefore,

S/N = (V) [T(l-T ) QNatB] 2

(2) 2AF/No.

If we make two measurements of different phases, the percent

change in signal will be equal to VA for small phase changes Ap. The

signal-to-noise ratio must be greater than I/VA4. From this we can

obtain an expression for the number of photons required to detect a phase

change 6A

N = (NatB) = 8A2F/No. 2

AP4V3QT(I-T 2) 2
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Figure 27 shows the minimum number of photons required to obtain A4 =

0.01 A, A = 0.02 A for various size Zernike radii.

AO.- 0.01X

2 A = 002A

100 200 400

Photons
(times 104 for AO = 0.01), times 10' for AO = 0.02A

Fig. 27. Number of photons required to obtain S/N sufficient to
measure A (0.01 X, 0.02 A).

Assuming a collecting area a - 100 cm2 , a bandwidth of 20 nm,

and an Ao type star, we have determined the integration times required

for various star magnitudes. Figure 28a shows the star magnitude vs

integration time per pupil point for A4 = 0.01 A for 3-pm and 4-pm

radii Zernike disks, and Fig. 28b shows the same for A = 0.02 A. These

calculations have assumed a perfect detector. For a real detector with

a quantum efficiency of about 0.1, the photon requirement would have

to be increased by a factor of 10, and the integration times would also

have to be increased by a factor of 10. Thus, for reasonable collection
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5

a
4 b= 4pm b= 3 pm

3

2

E

Cn

01

1 2 3

Time (sec)

b b. 4 pm

4

E

2

0
0 0.5

Time (sec)

Fig. 28. Required star magnitude-for (a) X/100 detection and (b) X/50
detection. A = 100 cm A = 200 , b - radius of Zernike disk.
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times in a real system we are talking about star magnitudes of 0 or less

for the Zernike test to resolve A = 0.01 X over the full ± 0.25 A

range.

g. Fabrication Process for Zernike Disks

Below is a step-by-step procedure for manufacturing a Zernike

disk, a procedure that we developed in our clean area, solid-state

circuitry facility. Much of the process is extremely sensitive to

small dust particles, chemical contamination, and environmental controls.

These factors all influence the success or failure of the process. In

summary, dust must be minimized, care must be taken to avoid chemical

contamination, and the temperature and humidity must be regulated in

order to achieve repeatable results. Originally an aluminum coating

was used. However, after doing a metal study, we found that chromium

was a better choice for several reasons: (1) it coats better at our

transmission values, (2) it is more resistant to the glass etch, and

(3) it has a phase retardation effect rather than an advance, which

significantly lowers the required glass etch depth.

i. Zernike manufacture (erosion method)

1. Clean substrate.

2. Coat with chromium to specified transmission.

3. Clean substrate.

4. Spin on photoresist

Shipley: AZ-1350

Spinner: 5,000 rpm for 20 sec.

5. Bake at 750 C for 10 min.
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6. Expose with mask i.n uv.

7. Develop in AZ-developer for 45 sec.

a. (1:1 dilution).

b. Rinse in deionized water.

8. Bake 20 min at 1200C.

9. Etch.

a. Chromium etch.

1:1.

HCI:H 20.

~ 60 sec.

Initiate by contact with metal forceps.

b. Glass etch. Rate (230C): 0.46 pm/min.

5:5:1 diluted to 1/8 strength with H?0.

1172 0:NIHI)F1 :1I.

10. Photoresist removal.

J-100 at -800 C.

Rinse in deionized H20.

Dry - N2.

11. Inspect.

ii. Zernike manufacture--metal phase shift effect

We have developed the equations that describe the optimum trans-

mission and phase delays. Ideally we would like the phase delay to be

introduced by the erosion process and the attenuation to be introduced

by the aluminum coating. However, because of the complex index of re-

fraction and finite thickness of the metal, we must make corrections to

account for the phase delay introduced by the metal. We have calculated

the phase change 0, introduced by the metal for various values of

thickness d and also the transmission for various values of d. This

information appears in Fig. 29. By referring to this graph and Table
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100 0
0

Substrate index - 1.516
A = 630 mm
k - 2.260
n - 3.190

80 - -0.05

12

r 60 -0.10

40 -0.15

20 -0.20

0I -0.25
0 10 20 30 40 50 60

Film thickness (nm)

Fig. 29. Transmission, thickness, and phase shift for
chromium films used in Zernike disk manufacture.

V for T2 and a we can calculate the required depth of erosion in our

substrate using the equation

0 + (d/x) + a
n -

where

0 = phase advance produced by chromium in waves

d = thickness of the chromium film

X = wavelength

a = required retardation in waves

n = index of refraction of substrate.

As an example for a 3-pm radius Zernike disk at 600 nm, we
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require that T' 7,, and - 0.206 A. From Fig. 29 we obtaini 0 -0.17 A

and d = 45 rm. Taking n = 1.516 we obtain

-0.17 + (45/600) + 0.206
0:516

t 0.215 waves (at 600 nm).

h. Experimental Evaluation

i. Laboratory experimental arrangement

In order to evaluate the sensitivity of the Zernike test, the

configuration sketched in Fig. 30 was used. As a star source, a highly

stabilized 20-nm-bandwidth white light source centered at 590 nm was used.

Reimaged
pupil

PMT

Aberration Zernike Current togenerator disk A voltage
amplifier

Stabilized
power-su]iv Integrator

Digital
voltmeter

Fig. 30. Zernike test experimental arrangement.
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The star source was imaged through the aberration generator onto the

Zernike disk that was mounted on a three-axis, ultra-precision, highly

stable slide. The lens following the disk reimaged the aberration

generator pupil at A, where a 1.8-mm aperture was used to scan across

the pupil. The energy through this aperture fell on the PMT creating

an output current signal that was amplified and converted to a voltage

signal, which was automatically integrated over a 10-sec period. This

integrated value was then displayed on a digital voltmeter. This inte-

gration technique enabled us to average out most vibrational effects

and other short-term variations.

Typical stability of light emitted from our lamp source with

this scheme was better than one part in a hundred during an experiment.

ii. Manufactured Zernike disk parameters

Following the procedure outlined in the section on manufacturing,

we produced a Zernike disk with the following properties:

Disk radius b = 3.4 im

Transmission T2 = 7%

Phase shift a = 0.19 X.

The radius of the disk was measured using a filar eyepiece and

calibration graticule and is correct to approximately ± 0.1 um. The

transmission of the coating was measured directly in the experimental

arrangement described in the preceding section and is accurate to a small

fraction of a percent. The phase shift a was not entirely directly mea-

sured, but calculated from the complex index of refraction of chromium
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and from the fringe shift measurement on the eroded sample. It is most

likely that the error here is ± 0.04 A.

iii. Generator adjustment

In order to evaluate the Zernike test in the small aberration

range it was necessary to start with a system that was perfect to approx-

imately A/20 or better for the low-order aberrations. This was accom-

plished by stopping the aberration generator down to a resulting f/16

system. In the process the position of the spherical generator was

changed to 49.2 mm as the nominal zero aberration setting.

iv. Experimental procedure

The purpose of this experiment was to determine the sensitivity

of the Zernike test to measure small aberrations. First a baseline

intensity scan of the pupil, reimaged through the Zernike disk, was

made. Then, a small aberration was introduced, and the scan was repeated.

The intensity values of these two.runs were then subtracted and the data

were plotted vs pupil position, with the central intensity change of

the pupil always normalized to zero. The introduction of an aberration

inevitably also introduced a small shift in the image position, which

showed up on the data as a linear intensity variation. This term was

removed and the resulting "de-tilted" data were used. Plotted on the

same graphs we also included the predicted intensity changes for the

introduced aberrations using the measured disk parameters. These are

the plots illustrated in Figs. 31a through 31d for various amounts of

defocus, coma, spherical aberration, and astigmatism.
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(a) Astigmatism. W2 2 = 0.102 X at orientation 0 = 33.00
Predicted OPD is 0.043 A at position 4.

x .04 f
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x x6

X Predicted
0Mteasured

Sx
.01 o

x x

: l J T ! I '
-5 -4 -3 -2 -1 1 2 3 4 5

Pupil position

(b) Defocus. W22 = 0.08 X. Predicted OPD is 0.051 X at
position 4.

Fig. 31. Reimaged pupil intensity change vs pupil position. F/No.
16, X = 590 nm, b = 3.4 pm, T 2 7.2%, o = V.19 X.
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(c) Coma. W31 = 0.0446 X at 0 = 00 . Predicted OPD is 0.023 A
at position 4. Note that the scale has been changed for the sake

of clarity.

Fig. 31. (Continued)
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(d) Spherical aberration. W40 = 0.0455 X. Predicted OPD is
0.0176 X at position 4. Note that the scale has been changed

for the sake of clarity.

Fig. 31. (Continued).

During the course of scanning the pupil, the image tended to

drift slowly around the small vibrations that were averaged out through

the integration scheme. This long-term drift was compensated by using

the edge of the pupil as a reference intensity. Since the effect of

image drift is a tilt aberration, the intensity effects are linear across

the pupil. Thus, in order to compensate for tilt changes during a scan,

one merely adds or subtracts a percentage of the edge reference intensity

change; this percentage depends linearly on the pupil position. This

very same procedure could be followed in an operational instrument to

compensate for image motion.
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v. Discussion of results

WhoiC inspecting Fig. 31a through 3.1ld, it should be noted that

the intensity change is the absolute percent energy change referred to

the reimaged pupil. Since our light source was simulating a star with a

magnitude of approximately 2, we would require integration times of

approximately 5 sec at each point to satisfy statistical S/N relation-

ships to obtain X/100 sensitivity. We did, however, increase this time

to 10 sec per point so that short-term laboratory vibrations and air

turbulence could be averaged out more satisfactorily.

As we inspect each of the graphs, we see that all points agree

with predicted values better than 0.01 X with an rms error of 0.003 X

over all data collected. This degree of accuracy is actually beyond the

calibration accuracy of the laboratory wavefront error simulator (A/100).

We can thus conclude that the Zernike test has sensitivity capabilities

exceeding A/100 and that the theory of operation developed here and the

fabrication techniques are adequate for use to better than A/100.

2. Polarization Interferometers

a. General Discussion

Polarization interferometers have generally been used up to now

as devices for creating fringes. We can gain maximum sensitivity by

taking phase information and converting it into states of linear polari-

zation using a sensor that can read out the polarization state and thus

obtain a phase reading. An instrument with a polarization readout in a

Twyman-Green configuration has been built at the Optical Sciences Center
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and has demonstrated sensitivities of X/500. This is to be compared

with a X/50 sensitivity of the traditional two-beam fringe reading

Twyman-Green interferometer. The Twyman-Green instruments, of course,

operate with an artificial source that generates a nearly perfect refer-

ence wave. Since we are using a real star source we have to generate

our own reference. Two possibilities are (1) the use of some sort of

polarization pupil shearing technique, such as the lateral shear, which

we have chosen for laboratory purposes or (2) the use of a method simi-

lar to the Zernike phase test, except operating in a polarizing sense,

which can generate its own nearly perfect reference wave. The first con-

cept we call the shearing polarization interferometer and the second the

Zernike polarization disk interferometer.

b. The Shearing Polarization Test

There are many types of shear (lateral, radial, inverting, etc.)

that can be used to produce interference effects between two points in

the pupil of an optical system. For laboratory simplicity we have chosen

to illustrate, analyze, and construct a polarizing lateral shearing device.

The basic idea is as follows: In Fig. 32a we have the exit pupil of the

system, which, in general, will be in some partially polarized state.

We then reimage this pupil at C through the polarizing interferometer

as follows. By means of a polarizer we put the wavefront into a linear

polarized state. This linear polarized pupil is then operated on by

a series of optical elements to produce at C two images of the system

exit pupil slightly displaced from one another such that one image is
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r:ight-circularly polarized and the other image is left-circularly

polarized. If we now look at a point in the sheared pupil image we

have light right-circularly polarized from point A interfering with light

left-circularly polarized from point B. If point A has phase AA and

point B has phase AB, the two oppositely-circularly polarized coherent

beams combine to produce a linearly polarized beam such that

A = (AA AB)/ 2 ,

where p is the direction of linearly polarized light. This is illustrated

in Fig. 32b. We now use some sort of device to detect this linear

polarization state and thus obtain a direct measurement of the sheared

phase (AA-AB) across the pupil.

Shearing
Exit pupil polarization Polarization

device yeadout

C (sheared pupil) a(

B A 
= (A A A- 3 )/2

& BA b

Fig. 32. Polarization shearing concepts.
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i. Ways of producing the sheared polarization states

There are many possible ways of obtaining the desired orthogonal

circularly polarized sheared pupil condition at point C. Several of

these are illustrated below with some brief comments.

Figure 33 shows a neat, compact unit where the shear in the

pupil is produced by displacement of the two halves of the modified

pentaprism along the polarizing beamsplitter plane A-B. *Plane polarized

light at 450 is then passed through the prism and sheared into two or-

thogonal states of polarization. These two orthogonal states then emerge

at D where they pass through an achromatic quarter-wave plate at 450,

which in turn yields two oppositely-circularly polarized pupils at plane

C. We have a compact unit where the shear is easily varied from zero to

any value by movement along A-B. We require manufacture using very low

birefringence glass so as to maintain linear polarization states. For

greater stability one could replace the second right angle prism with

another prism. The above arrangement is achromatic in collimated light.

A Achromatic
- quarter-waveplate

Polarizer I

B Polarizing beamsplitter

Fig. 33. Pentaprism polarization shearing device.
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Figure 34 shows a compact way to obtain circularly-polarized

light by using two Wollaston prisms. The amount of shear is controlled

by the separation of the two matched prisms with the scaling factor set

by the prism angle 0. The advantage of the unit is that it is naturally

achromatic and compact. However, the disadvantages are that it is not

able to go to zero shear, and the large separation D required for large

shears may result in uncompensated path differences and coherence length

problems. This device appears most suitable for a small, fixed, shear

mode where the two prisms are made into a single unit. In this case we

have a single, compact, shearing mechanism.

Achromatic
quarter-waveplate

(at 450

Wollaston Wollaston

0I O

D
Polarizer

Fig. 34. Double Wollaston prism polarization
shearing device.

In Fig. 35 we have a polarizing beamsplitter A-B. The shear is

introduced by tilting a right angle prism about axis 0. The shear is

given by

S = 2t sin u 1 n2 - sin 2u
n2 - sin2u
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where t is the total thickness of the upper prism, u is the tilt angle,

and

S = 2tu n- 1

for small values of u.

In this case we can vary our shear from zero upwards. However,

at large shears the variation is very nonlinear, and wavelength-dependent

shear effects can be large. Low birefringence glass is required.

Achromatic
Polarizer quarter-waveplate
at 45 (450)

_ ' I

A

Polarizing
beamsplitter

Fig. 35. Polarizing beamsplitter tiltable prism polarization
shearing device.
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In the simple arrangement shown in Fig. 36, a W611aston prism is

placed at the system focus. We have a fixed shear determined by the

prism angle 0. Lens B will affect the polarization orthogonality of the

shear, and the arrangement is very sensitive to positioning of the prism.

The shear itself is no longer achromatic.

Wollaston prism quarter-waveplate

Chief ray Focus

lens
Polarizer

Fig. 36. Single Wollaston prism polarization shearing device.

There are other ways of introducing orthogonally-polarized

sheared pupils either with birefringent materials or by using polarizing

beamsplitters with tiltable glass plates or mirrors. Of the concepts

presented, the first would be preferred based on its maximum versatility

and simplicity. The second would be preferred based on its simplicity

with limited versatility. For laboratory purposes and since we could

use off-the-shelf components, we have designed our shearing unit about

this second concept.



108

c. Ways of Reading Out Polarization States

We discuss here two possible ways of reading out polarization

states.

i. Single rotatable Wollaston prism

Assuming we have produced two oppositely-circularly polarized

sheared pupil images at C in Fig. 32, we know that these two coherent

beams combine to produce a state of linear polarization where the angle

is

AA - AB
2

Behind this we position a Wollaston prism and a decollimating lens D,

as shown in Fig. 36. If the original zero aberration position of the

Wollaston prism is at 450, we rotate this prism until the two oppositely-

polarized intensities are equal. We can measure these intensities by

use of an image dissector tube with deflection coils, in a synchronous

amplification scheme (Fig. 37). We would thus rotate the Wollaston

toward a null signal and encode the rotation, where a rotation of 1/60

rad (-10) corresponds to a phase measurement A1 - A2 of ~ A/190.

Polarizer Angular readoutQuarter- Wollaston prism
Fg. 37. Snge channwaveplate rization readout ith imae dissector.

Fig. 37. Single channel poZarization readout with image dissector.



109

We have chosen to simulate this scheme in the laboratory because

of its simplicity. llowever, instead of using anl image dissector we

simulate the dissector with two counter-rotating prisms as illustrated

in Fig. 38. We thus sequentially sample one of two beams at 28 Hz and

synchronously amplify the difference signal. The Wollaston prism is

rotated until this signal is minimized and this rotation is recorded.

Pupil Image Angular readout Wollaston prism

\ pil scanner Risley prism
Aberr. I/ I"-I A-1 T ^ - nc ,,ll
star I PMT amp mee
Image. a

Variable
shear
Wollaston X/4 plate Chopper
prism 

Choppe

Sync
motor 0

Fig. 38. Laboratory simula'tion of shearing
polarization interferometer.

ii. The two-channel device

If we use the optical arrangement illustrated in Fig. 39, we

get difference signals in each channel. In channel one, with the quarter-

wave plate fast axis located at +450, we obtain a sinusoidally modulated

signal where All = Ii - 12 = K sin(Al - A2) and in channel two with the

quarter-wave plate fast axis oriented at -450 we obtain AI.2 = K cos(Al -

A2). The circuits are balanced for equal gain. Then the signals are

divided so that

AIl/I 2 = tan(A1 - A2 ),
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Synchronous differential amp

Image
dissector

Channel two

AI = K cos(Al - A2) arc

Polarizer Wollaston
Quarter-waveplate Synchronous

differential
amp

Aberrated Channel one

star source Wollaston Channelone
Wollaston AI = K sin(A - A2)

prisms Beamsplitter Quarter-waveplate
Sheared
pupils

Fig. 39. Two-channel shearing polarization interferometer.

and then the arc tan (AI1/AI2) is taken. All of this is done electron-

ically without the need for movement of any components. As with the

other scheme it is insensitive to source fluctuations. This type of

readout has been utilized in a Twyman-Green configuration instrument

constructd at he pIcal Sciences CenteILr, and phiase errors of 1 500

have been measured.

d. Discussion of the Polarization Intensity Equations
Including Alignment and Fabrication Errors

Below we derive expressions for the intensities of the sheared

pupil signals as a function of (1) unbalanced signal amplitudes between

two polarization states, (2) angular positioning of components, and (3)

departure from perfect quarter-wave plate delay.



Let us assume that the polarizer-shearing combination produces

a shear in the y direction, as illustrated in Fig. 40, where the ampli-

tude of one polarization is

E, eiA[x,y - (S/2)]

and the other is

E Ie i A [ x' y + (S/2)]

where S is the total shear.

EleiA(x, y + (S/2))

Fig. 40. Sheared pupil geometry.

These signals then pass through the quarter-wave plate (Fig. 41)

oriented at some angle 6 with respect to the x axis. (Ideally 0 = + 450,

depending of whether we desire sine or cosine modulation, as discussed

in the previous section.) The plate advances the phase by (r/2) + 6 for

the fast axis over the slow axis.



112

E/eiA(x, y - (S/2))

E 8

Fast axis - - E'eiA(x, y + (S/2))

Fig. 41. Signal component passing
through quarter-wave plate.

The field passing through the fast axis is

E e i[(7/2) + 6 eiA[x,y - (S/2)] sin

+ eiA[x,y + (S/2)]cos].

The field passing through the slow axis direction is

Enlo = Elle iA [ x y + (S/2)]sine

- E ei[x,y - (S/2)] cose.

We now orient a Wollaston prism at an angle i with respect to the x axis

(Fig. 42). Light through this prism then produces one signal polarized

in the i direction and another polarized at p + 900 .
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EO + 900
Wollaston orientation

EO

Fig. 42. Signal component passing
through a Wollaston prism.

The output through the Wollaston is thus

I = EE* = lEe12cos 2 (6-) + IE6+90I2sin2(6o-)

+ 2Re EE 6 +90 cos(O- )sin(O-)

Ip+900 = E +90E P+90* = IE0+90 12COS 2 (0-P)

+ IE0 2sin 2 (O-)

- 2Re EoE6+90 cos(O-i)sin(O-i).

We now substitute for EO, and Ee+90 and assume 6 is small so that

i( + 6)6.e 2= i .



114

This yields

14 = [(EL2sin 2Q + E112 cos 2 0 + EEllsin20) cos 2 (O _ 4)

+ (Ej2 cos 2 0 + E1 2 sin 2  - EiE1 sin26) sin2(o - ,)] cosA

- EEl sin(20 - 24) sinA

+ 6 (EIE) cosA - (E1 2- E ) 2sin2 sin(20 - 2,)

=I+900 (E 12 sin 20 + E1
2 cos 2 6 - EiE Isin26) cos 2 (O - 4)

+ (E 12 cos 2 0 + E1
2 sin2 0 + EIEllsin28) sin 2(O - ) cosA

+ EE I-sin(26 - 2) sinA

- 6 [EE cosA - (E1 1
2 - E 1

2) sin2ei sin(2e - 24).

We now substract the two signals

:1+900 -I = 2EEL sinA sin' . -l

- 2EE 1 sin26 cosA cos(20 - 24)

- 6 EIE IcosA - (E112_- E 2 ) sin20 sin(20 - 24).

i. Possible operating conditions for two-channel device

Neglecting 6 for the present, if

0 = 450, 9, = 0 0 = 0, , = 450
(Condition 1)

AI = 2EEllsinA AI = 2E ElisinA
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If f = -150, , = -45 ( = -,15i' , l1i. .15p

(Con ittion 2)
Al = 2E/ ElCOsA At = 21 L I cosA

We see we have two possible operating conditions for the two-channel

device.

ii. Departure from perfect quarter-wave plate

In the one-channel device P is rotated untilI Al 0, or

1 (Ell? - E,2)6

tanA = tan(90 - 20 + 2i) + 6 --sin26 2EE ElcosA

With the orientation of the quarter-wave plate fast axis at

0 = 450, as far as tolerancing on 6 goes, we see that for small phase

errors the second error term will be a small fraction of the first. We

can manufacture a quarter-wave plate with 6 - 1/100 or less over 1000

bandwidth; i.e.,

6 << and tan = tan2 + 6.ave 100

The effect on small phase errors A X/200 will be to introduce

a constant offset error , the constant offset being less than + X/500.

This constant correction would hold beyond A becoming somewhat greater

than 1/20. Beyond this, the correction would get smaller' for larger

aberrations. If it were desired one could measure 6 over the passband

of the instrument and determine the average 6, which is 8, and compensate

for measured values.
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iii. Alignment of quarter-wave plate

Now let us examine small errors in e and Ae when 0 = 450 ± AO

1
tanA = tan(90 - 26 + 2p)

cos(90 - 2A0)

tanA = tan(2 - 2AO).
cos(2AO)

The cos(2A0) effect is negligible for small Ae of a few degrees, there-

fore,

tanA = tan(2* - 2A8)

A = 2i - 2A6.

We see that the effect of the quarter-wave plate misalignment is to

introduce a constant bias of 2A0 in the measurements, if AO is kept to

±20.

e. Bandwidth Considerations

i. General discussion

If e = 450, we arrive at an error signal

AI = I(A) sin(A - 2p)

where A = (2n/A)x and x is the physical path difference between the

sheared points. If we let K = 2i/A , then A = Kx and

AI = I(K) sin(Kx - 2)AK

for monochromatic radiation of bandwidth AK.
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If we haIve a b;Indwidth of I AK/2 and if we take i nto cons ider a-

tion tile weighted spec t ral response of the detector, the sha pe of t lie

bandpass filter, and the distribution of the radiation, we obtain an

integrated effect. If the weighted function is symmetric about a Kave

we will show below that

AI = sin(KWx - 2i)F(x, B(K), S, R)AK

where KW is the weighted average wave number and F(x, B(K), S, R) is a

function depending on the spectral distribution S, responsivity R,

bandpass filter function B(K), and x.

It is desirable to have F - 1 and to have a much slower varying

function of x than the sine function. If we consider the case of narrow

bandwidths S, R can be assumed constant. If we take AK to be a square

bandpass filter we find that

AI = sin(K avex - 2i) sincxAKAK.

If AX = + 250 a, and for the range of x, Kx 0 , then

sincxAK constant = 1,

and

AI = sin(K avex - 2i)AK

for a narrow band where

K + K
max min

ave 2
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ii. General theory

In Fig. 43 F(K) represents the spectral energy distribution

multiplied by the filter response multiplied by the detector response.

The error signal for a setting p of our readout prism is

K

AI f F(K)sin(Kx - 2i)dK.

K1

F(K)

K1  Ko K2  K

Fig. 43. Effective spectral energy distribution.

In the monochromatic case we have seen that AI = 0 if 2* = Kx.

We would like to see the effect of this general radiation function F(K)

on our error signal AI

sin(Kx- 2x) 2 (eiKx e-i2 - e-iKx ei2 )

therefore, K K

AI = .e- i2* 2 F(K)eiKxdK - ei2f 2 F(K)e-iKxdK

K1 K1
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AI = Imaginary part of e-i2 J F(K)eiKxdK

K

i(KOx-2*) K2-K 0
AI = Im e F(K)e KxdK

-(K1-K O)

Here we have used the fact that F(K) is real, and the shift theo-

rem of Fourier transforms, where KO is the weighted average

Now F(K) can be written as the sum of an even and odd function.

F(K) = EF(K) + OF(K)

i(Kox-2i) F iKx f( iKx
AI = Im e (EF(K)eiKxdK + OF(K)eiKxdK.

The Fourier transform of an even function is real and even, and the

Fourier transform of an odd function is imaginary and odd. Thus we

obtain

AI = sin(Kox-2*)F(EF) + i cos(Kox-2p) F(OF),

where F denotes Fourier transform.

We note that for any even distribution function our error signal

is of the same functional form as in the monochromatic case, where K0 is

the weighted average wave number. In the case of a nonsymmetric distri-

bution, the odd part of the distribution will cause in general an inability
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to obtain the null condition at Kox - 2p = 0. The condition for nulling

now becomes

tan(Xx -. 2) iF(OF) (relationship A).F(EF)

In general we can thus make the bandwidth large if we take the spectral

distribution function F(K) and correct for the null condition.

In particular we have our highest sensitivity requirement in the

vicinity of x = 0. In this region F(OF) = 0, and we have 2 = Kox, the

monochromatic condition, as a solution above, and F(EF) only lowers the

signal-to-noise ratio.

iii. Summary

In summary, our polarization interferometer can be used as a

"white light" interferometer under the following conditions:

(1) In the near zero aberration area with no corrections on

the monochromatic case provided we use K - K0 .

(2) In the larger aberration area, with no corrections, if

the asymmetry of the distribution is small. For example,

if

iF(OF) 1
F(EF) 60 '

we would have X/200 error. We also assume F(FE) = 1.

(3) In the larger aberration area if the spectral character-

ist:ics are known and we make corrections as provided by

relationship A, or if we are willing to accept lower
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accuracy for the larger aberration measurements, where

the above relationship determines the measurement degra-

dation if we know our distribution and sensitivity

functions.

f. Signal-to-Noise Ratio

In order to resolve a small change in signal we want the S/N

ratio to be greater than the ratio of signal to change in signal, pro-

duced by a phase difference, I/Al. For a very high degree of confidence

(99% or 3 o), we require that S/N > 3I/AI. For A small, Q 0, 6 = 450,

and AI = IA. Therefore, I/AI = 1/A and S/N > 3/A. The signal-to-noise

ratio results from taking two measurements on an approximate equal

number of photons

S/N = [(Number of photons) /(2) ] x DQE

where

Number of photons - NatB*E

N = number incident per unit time per R per sec 1000

a = collecting area = 100 cm2

B = bandwidth = 500 2

E = polarizer effect = 0.5 (linear polarizer efficiency)

x 0.5 (Wollaston prism) = 0.25.

DQE = detective quantum efficiency of detector 0.33.

Thus

Number of photons required = (1/E)[3(2)2/A]2 (1/DQE2).
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This relationship is shown in Fig. 44.

0
0
.

60X 10s

IS 40X 105

E

c 20X 106
.-

X/100 X/200 X/300 X/400
Sensitivity

Fig. 44. Relationship between the required number
of incident photone versus sensitivity.

Using

a = 100 cm2

B = 0 0 nR,

N = 1060 photons/cm2sec X for Ao zero magnitude star,

we obtain a graph of sampling time versus star magnitude for various

sensitivity requirements as shown in Fig. 45.

g. Effect of Shearing on Low-Order Aberrations

In the shearing interferometer we measure the difference in

optical path between two points in the pupil as shown in Fig. 46. Below

we derive expressions in terms of the shear S and the aberration
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X/100 X/190
X/380

8

E

4

0 I
.01 .1 1 10

Sampling time (sec)

Fig. 45. Sampling times and stellar magnitudes required for
three sensitivities.

S/2 S/2

Fig. 46. Shear pupil geometry.
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coefficients. From these expressions we will be able to predict the

sensitivity of measurement for low-order aberrations as a function of

shear S and instrument sensitivity

2 + y2 1 + S2 - 2 * -cosy4 4

siny = y

lmax = + 1 - (S/2)2]

IXmax = 11 - (S/2) .

In the nonsheared pupil, if coma is oriented at angle 6, astig-

matism at angle V, and tilt at angle a, all measured from the y axis,

the general wavefront expression is

W(x,y) = W20 (x2 + y2) + W40 (x4 + 2x2y2 + y4)

+ W11x sina + W11 cosa + W31(X2 + y2)

(x sin6 + y cosO)

+ W22[(x 2 + y2) + (y2 -_ 2) cos2 + xy sin2p].

This is a normalized expression where x2 + y2 < 1. We now shear the

pupils by an amount S, where S is a number from 0 to 2 (where S = 2 is

a shear of a pupil diameter). At some point A, we now have two waves,

W(+) and W(-) interfering

W(±) = W(x ± -, y).



125

By substituting in the previous expression for W we obtain

W(+) = W2 0 {(x
2+y 2 ) + Sx + .- S 2 }

+ W4 0 {(x 2 + 2x2y 2 + y4 ) + 2x(x2+y 2 )S + 1(3x2+y2)S2

+ $3 + -1 S4}
16

+ W {x sin0 - - S sin( + y cosa
1

+ W31 {(x2+y2) (x sino + y cose) + -[(3x2+y2)(sino)

+ 2xy cose]S

1
+ [3x sine +.y cosO]S 2 + -S3 sin0}

+ W2{ [ x2+ 2 ) + - (y2-x2)(cos2) + (xy sin24)]

S -(l- cos2qp)x + (sin2 I)ylS

+ -[(1-cos2*)]S 2}.

At point A, we measure the difference between W(+) and W(-)

W(+) - W(-) = 2W2 0xS + 4W40x(x
2+y2)S + W4 0xS

3

W11S sina + W3 1 [(3x
2+y2)sinO + 2xy cose]S

+ W31sinGS3 + W2 2 [(1-cos2*)x + sin2*y]S.4 31s2
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i. Sensitivity dilution

We can make use of the expression above to determine our ability

to measure various amounts of the different aberration types as a func-

tion of (1) our ability to measure W(+) - W(-) and (2) the amount of

shear S. This information is summarized in Table VII. We see that in

general the result of shearing is to reduce the sensitivity in measuring

small amounts of aberration. This dilution, of course, is dependent

upon the functional form of the aberration and the amount of shear. For

the LST a shear of 0.2 - 0.4 (the value of S) would be appropriate since

it would give information over most of the pupil. The important thing

to recognize here is that shearing dilutes the sensitivity of any readout

one chooses and that in order to make up for this dilution one must

look for more sensitive forms of readout, as in the case of the polari-

zation type readout, which we are investigating.

Ta ble VII

Shearing polarization interferometer with lateral shear

(a) A/S0 detection capability, static, fringe position reading

Sensitivity (A)
Shear

Aberration 0.1 0.3 0.8

Defocus 1/10 1.25 1/48

Tilt 1/5 1/15 1/40

Spherical 1/16 1/37 1/50

Coma 1/14 1/32 1/50

Astigmatism 1/10 1/25 1/48
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Cb) X/300 detection capability, polarization or other phase read-

ing scheme

Sensitivity (X)

Shear

Aberration 0.1 0.3 0.8

Defocus 1/60 1/150 1/290

Tilt 1/30 1/90 1/240

Spherical 1/100 1/220 1/300

Coma 1/80 1/195 1/300

Astigmatism 1/60 1/150 1/290

ii. Small Shear Limit.

As we make S small we can take the division

W(+) - W(-) = W1 1sin a + 2W2 0x + 4W4 0x(x
2+y2 )

S

+ W3 1 [(3x
2+y2)sin0 + 2xy cosO]

+ W2 2 [(i-cos2)x + sin2iy].

This is merely the expression for 6W/6x, the slope of the wave-

front.(x component) at x,y. A corresponding shear in the y direction

would then give the y component slope 6W/6y.

h. Experimental Evaluation

i. Procedure

The experimental arrangement illustrated in Fig. 38 was set up

on the optical bench, a photograph of which appears in Fig. 47. We
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Fig. 4?. Shearing poZarization test experimental arrangement.
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first attempted to use a narrowband.white light source approxhimately 40

nmi wide. Unfortunately, we.were not able to p)roduce the coherency re-

quired to obtain interference. While we have not quantitatively answered

this problem we believe that it stems from the double Wollaston shearing

scheme, which was chosen for laboratory convenience. We believe that

the path differences accumulated by the orthogonally polarized sheared

pupils exceeds the coherence length required for interference 6ffects

to occur. This problem probably arises from poor Wollaston matching,

misalignment, and the fact that this shearing scheme is not self-

compensating. However, we do feel that one of the other shearing

mechanisms such as described in Fig. 33 could eliminate this problem if

properly manufactured. Furthermore, we feel that the polarization read-

out scheme is at least as important to evaluate as the shearing mechanism.

With these things in mind, we substituted a laser source for the white

light source and proceeded as follows.

The Wollaston separation was adjusted to give the sheared pupil

situation illustrated in Fig. 48.

Y

4

Fig. 48. Sheared pupil situation.
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This corresponded to a shear value S = 0.27 at 450. The pupil

was then scanned in the shear direction using a 1.25-mm scanning aper-

ture at four positions out to 7.2 mm. A similar procedure as was

described for the Hartmann test was followed. First, a baseline was

established by readout of the respective polarization angle measurements

at each pupil position. Again the center pupil position was monitored

to correct for image drift. Aberrations were then introduced and the

same procedure was followed. The aberrations change data were then sub-

tracted from the baseline, and a graph of sheared aberration angle vs

pupil position was obtained. These data were then fitted to a low-order

polynomial, which was then integrated with the proper scaling to produce

optical path difference vs pupil positon data. Two runs were taken, one

on defocus and the other on spherical plus defocus as shown in Fig. 49.

ii. Discussion

From the preceding data one can see that the sheared phase angle

readout is consistently better than 10 departure from the expected value.

Thus our readout scheme under laboratory conditions with a mechanically

rotating prism scanner produced readout to better than A/200, in the

sheared sense. This produced OPD results that agreed with predicted

values to the order of X/100. Thus for an f/12 system, if coherency

problems are eliminated in the shearing scheme, this interferometer

should be able to satisfy A/100 sensitivity requirements.
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Fig. 49. Sheared phase angle and optical path difference vs pupil posi-
tion for defocus and for defocus plus spherical aberration.
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3. Zernike Polarization Sensor (ZPS)

a. General Discussion

The ZPS represents a conceptual attempt to marry the Zernike test

to a polarization readout. The result can be a sensor with at least the

sensitivity of the Zernike test and a readout that provides for a direct

phase measurement in terms of the linear polarization state.

The experimental arrangement is indicated in Fig. 50. The wave-

front from the system exit pupil first passes through a linear polarizer.

At the system focus we place a birefringent crystal polished with its

optic axis in the plane of the surface and adjusted to a multiple order

thickness of a quarter wave. A small cylindrical well (~1/5 the Airy

disk diameter) is eroded to a depth corresponding to a half-wave retar-

dation between the ordinary and extraordinary waves. The area surround-

ing the square well is partially aluminized so that, with the Airy

pattern centered across the well, the energy transmitted through the

well is equal to the energy transmitted through the surround. As a re-

sult of this arrangement, we generate a reference wave of one circular

polarization from the inner part of the central core of the diffraction

pattern, and a test wave of the opposite circular polarization from the

outer part of the diffraction pattern. The lens following reimages the

system pupil at plane C. In this plane, the two oppositely circular

polarized waves interfere. According to the equations developed for

the Zernike test, which are again applicable here, the test wave contains

the wavefront deformation from each point on the pupil, and the reference

wave is of.essentially constant phase across the pupil, the constant
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Fig. 50. Zernike polarization sensor laboratory simulation.

dependent on the amount and type of aberration and the size of the

eroded well. These two waves combine to produce a linearly polarized

state (the polarization direction depending on the phase difference at

the point) at each point in the pupil. We measure this polarization

using a device of the type discussed in Chapter 4 and illustrated again

in Fig. 50. We thus have a test with the simplicity of the Zernike

test where we read out phase directly.

b. Design Parameters for ZPS

The optimum design parameters for the ZPS are obtained from the

same equations derived for use with the Zernike disk. The effects of

the. diameter of the half-wave plate will be manifested in the circular

polarization variations in the generated reference wave. For small

elliptical polarization effects, we want to keep this diameter about

1/5 the Airy core diameter. The transmission attenuation is introduced
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only because of its effect on the visibility function since we are not

concerned with the operating point using the ZPS.

c. Manufacture

The success of the ZPS depends on the ability to manufacture a

small half-wave plate. In order to eliminate tunneling effects we de-

cided to look at materials with a high birefringent index. The two we

chose are calcite and rutile.

We prepared several samples of both materials cut with their

optical axis lying in the planes of the polished surfaces. We sought

a procedure that would yield a smooth controllable surface erosion for

these materials. We tried many different acids on calcite and dis-

covered one combination that gave promising results; however, combina-

tions of acids under different conditionsfor rutile did not have positive

results.

Unfortunately, we were not able to manufacture the microhalf-wave

plate because of our inability to work out various chemical and imaging

problems. The approach with calcite, however, still has possibilities

and perhaps with further research the manufacturing details could be

worked out.
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CIIAPTIR 5

SUMMARY AND RECOMMENDATIONS

1. Wavefront Error Simulator

A wavefront error simulator was designed and manufactured in

order to simulate various stellar magnitudes, wavelength ranges, and

aberration conditions. The most critical part of the simulator design

was that of the aberration generator. This component was designed,

fabricated, and calibrated so that incremental changes of less than

A/100 could be introduced for low-order aberrations. The low-order

aberrations represent the types of wavefront error expected in the

operational LST. The wavefront error simulator was used in the experi-

mental evaluation of the Hartmann test, the Zernike test, and the shear-

ing polarization interferometer. Since low-order aberrations are more

difficult to measure than high-order aberrations, the test sensitivities

quoted below are in general likely to be conservative.

2. Hartmann Test

The most important consideration in the Hartmann test was the

method chosen for determining the slope of the sampled bundle of rays

from the telescope exit pupil. It was decided that the best approach

was to nutate the diffraction pattern formed by the sampled ray bundle

about a small collecting aperture. If the diffraction pattern nutation

was not perfectly centered on the collecting aperture, an ac error signal

indicated a ray bundle slope error. It was found that under laboratory
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conditions the highest sensitivities for slope error detection were

obtained when the collecting aperture was approximately the same size

as the diffraction pattern of the sampled bundle. Slope determination

was ultimately limited by the prevailing laboratory conditions. The

random error associated with the slope measurement was approximately

the same size as the diffraction pattern of the sampled bundle. Slope

determination was ultimately limited by the prevailing laboratory con-

ditions. The random error associated with the slope measurement was

approximately 0.2 arc sec rms. The wavefront error simulator was used

to introduce known aberration changes so that the wavefront error mea-

suring capability of the Hartmann test could be determined. It was

found that low-order aberrations couZd be measured to accuracies of

X/50 to X/100. This degree of accuracy contrasts with the common

misconception that the Hartmann test is a relatively coarse geometrical

method.

It is recommended that, as a worthwhile continuation, the Hart-

mann test be constructed using a star tracker tube, with a deflection

coil readout capability such as described in Chapter 3. Specifications

for the tube and coil stability can easily be obtained from the results

of the parametric and statistical studies. It would be worthwhile to

incorporate a reference position monitoring mechanism, with differential

detection. In this way slow drift effects and common vibrational effects

such as discussed in the experimental evaluation in Chapter 3 could be

eliminated.



137

3. Zernike Test

A general theory of the Zornike test was developed. It included

a procedure for specifying Zernike disk parameters such as phase, trans-

mission, and disk size so that the disk parameter choice was optimal for

the particular experimental situation. A technique for manufacturing

optimized Zernike disks was developed. One of these disks was incor-

porated into a laboratory Zernike figure sensor that was then used to

measure the aberration changes introduced by the wavefront error simula-

tor. It was found that the aberration changes could be measured to

better than X/100 for all low-order aberrations. The major source of

experimental error was due to source intensity fluctuations and image

drift.

4. Zernike Polarization Test

One of the major disadvantages of the Zernike test was that the

aberration was not measured directly but rather in terms of an intensity

change from a nominal zero aberration intensity level. It may be pos-

sible to eliminate this problem by using the Zernike disk principally in the

form of a polarization interferometer, 'where the aberration would mani-

fest itself as a linear polarization state change in the reimaged pupil.

One approach to implementing the principal involved the use of a micro-

half-wave plate manufactured from a birefringent material. We attempted

to manufacture the micro-half-wave plate in calcite by-an erosion

process. Out attempt was not successful. However, we feel that a disk

can be made with further-research effort directed toward establishing a

photoresist and etching procedure for calcite.
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Another possible way of implementing the Zernike polarization

test is illustrated in Fig. 51. Conceptually, as the light from the

system exit pupil converges toward focus, it first passes through a

polarizer and then enters the prism A through a concentric surface with-

out introducing spherical aberration. At the polarizing beamsplitting

surface I, the beam is split into two orthogonal linear polarizations.

One of these beams comes to a focus in the vicinity of pinhole B and

passes through. The pinhole is small enough to transmit only the

central part of the Airy disk. The light getting through the pinhole

forms a linearly polarized, near perfect reference wave. The light

focused at B' is unaltered and thus contains the aberration information

in an orthogonal-linear polarized state. The polarizer is rotated to

equalize the energy in the two beams. The two beams continue to diverge,

and the test beam passes completely through the second polarizing beam-

splitter while the reference beam is totally reflected. The orthogonal-

linear beams then pass through a quarter-wave plate oriented at 450

to the polarization directions and emerge in orthogonal circularly polar-

ized states. Lens C then collimates these waves and reimages the exit

pupil at D. At any point in the reimaged pupil at D, the oppositely

circularly polarized states combine to yield a linear polarized state

where the polarization direction is directly proportional to the phase

error in the test wave. There are many methods that can be used to

read out the polarization direction. Two of these methods indicate

that the phase could be measured directly to better than X/200.
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Fig. 51. Arrangement for Zernike polarization test.

The critical item for manufacture is the monolithic polarizing

prism A. It would be required that the total optical path traveled by

the reference wave be equal, to within the coherence length of the light

used, to that traveled by the test wave.

5. Shearing Polarization Interferometer

We examined the general capability,of the lateral shearing inter-

ferometer and reached the conclusion that a conventional lateral shearing

device would not have adequate sensitivity because of the dilution of

sensitivity inherent in a lateral shear. However, by incorporating a

polarization-type readout into the interferometer we could increase the
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sensitivity of the instrument significantly. Thus, in the laboratory

the primary objective in the construction of a lateral shearing inter-

ferometer was the experimental analysis of the polarization-type readout

using a star source. We thus designed and manufactured a white light

lateral shearing polarization interferometer in order to evaluate the

polarization readout scheme. We did S/N ratio studies and subsequent

predictions on sensitivities and required stellar magnitudes. An error

analysis on the system alignment and component fabrication also yielded

results. The interferometer was constructed and evaluated using a laser

star source because the shearing scheme did not maintain the coherency

required for broadband use. With the laser source it was found that

the sensitivity to low-order aberration measurement was X/100.

6. Concluding Comments

A surprising and important result obtained in the research was

the discovery that the Hartmann test is remarkably sensitive. The Hart-

mann test was originally considered to be suitable only for measuring

aberrations in the range of many waves down to about a tenth of a wave.

The results of the research indicate that the Hartmann test has sensitivi-

ties approaching X/100, and at this point the laboratory environment

limited the sensitivity attainable. Thus, it may be possible to use

the Hartmann test to measure the very large aberrations as well as small

aberrations with sensitivities approaching that of the Zernike test.
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APPENDIX

This Appendix contains a bibliography on optical testing. The

work was compiled at the Instituto Nacional de Astroffsica, Optica, y

Electr6nica, located in Puebla, Puebla, Mexico. It represents a two-

year effort by graduate students under the direction of Dr. D. Malacara-

Hlernandez and is included here with his kind permission.
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