217 research outputs found

    Auditory Scene Analysis in Alzheimer's disease

    Get PDF
    This thesis explores the behavioural and neuroanatomical picture of Auditory Scene Analysis (ASA) in Alzheimer’s disease (AD). Central auditory dysfunction is an understudied symptom of AD and there has been little connection between the neuropathological profile of the disease, its relationship to generic ASA functions, and real-world listening situations. Utilising novel neuropsychological batteries alongside structural and functional imaging techniques, this thesis aims to bridge this gap through investigations of auditory spatial, speech in noise, and (as a specialised auditory scene) music processing. Spatial location discrimination and motion detection of sounds was impaired in both typical AD and posterior cortical atrophy; this was associated with atrophy in right inferior parietal and posterior medial regions. A functional imaging investigation of auditory spatial processing in typical AD revealed abnormalities in posterior medial cortical areas when sounds were changing in location. Functional imaging of an everyday auditory scenario (hearing one’s own name over background babble) highlighted alteration in a right inferior parietal region. Novel neuropsychological tasks assessing components of musical ‘scenes’ found that global aspects of pitch pattern processing were impaired in both the typical and language variant of AD while local aspects were preserved; both global and local forms of temporal processing were also intact. These patients also exhibited diminished tonality perception and musical stream segregation based on familiar templates. These investigations delineate reduced ASA capacity in a number of components that make up everyday auditory scenes. This has real world implications for both typical AD and its rarer phenotypes. Furthermore, ASA dysfunction may inform us about network breakdown, network function, and sources of phenotypic similarity in AD

    Auditory spatial processing in Alzheimer's disease.

    Get PDF
    : The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease syndromic spectrum.<br/

    Musical tasks targeting preserved and impaired functions in two dementias.

    Get PDF
    Studies of musical abilities in dementia have for the most part been rather general assessments of abilities, for instance, assessing retention of music learned premorbidly. Here, we studied patients with dementias with contrasting cognitive profiles to explore specific aspects of music cognition under challenge. Patients suffered from Alzheimer's disease (AD), in which a primary impairment is in forming new declarative memories, or Lewy body disease (PD/LBD), a type of parkinsonism in which executive impairments are prominent. In the AD patients, we examined musical imagery. Behavioral and neural evidence confirms involvement of perceptual networks in imagery, and these are relatively spared in early stages of the illness. Thus, we expected patients to have relatively intact imagery in a mental pitch comparison task. For the LBD patients, we tested whether executive dysfunction would extend to music. We probed inhibitory skills by asking for a speeded pitch or timbre judgment when the irrelevant dimension was held constant or also changed. Preliminary results show that AD patients score similarly to controls in the imagery tasks, but PD/LBD patients are impaired relative to controls in suppressing some irrelevant musical dimensions, particularly when the required judgment varies from trial to trial

    Physiological phenotyping of dementias using emotional sounds.

    Get PDF
    INTRODUCTION: Emotional behavioral disturbances are hallmarks of many dementias but their pathophysiology is poorly understood. Here we addressed this issue using the paradigm of emotionally salient sounds. METHODS: Pupil responses and affective valence ratings for nonverbal sounds of varying emotional salience were assessed in patients with behavioral variant frontotemporal dementia (bvFTD) (n = 14), semantic dementia (SD) (n = 10), progressive nonfluent aphasia (PNFA) (n = 12), and AD (n = 10) versus healthy age-matched individuals (n = 26). RESULTS: Referenced to healthy individuals, overall autonomic reactivity to sound was normal in Alzheimer's disease (AD) but reduced in other syndromes. Patients with bvFTD, SD, and AD showed altered coupling between pupillary and affective behavioral responses to emotionally salient sounds. DISCUSSION: Emotional sounds are a useful model system for analyzing how dementias affect the processing of salient environmental signals, with implications for defining pathophysiological mechanisms and novel biomarker development

    Music Perception in Dementia.

    Get PDF
    Despite much recent interest in music and dementia, music perception has not been widely studied across dementia syndromes using an information processing approach. Here we addressed this issue in a cohort of 30 patients representing major dementia syndromes of typical Alzheimer's disease (AD, n = 16), logopenic aphasia (LPA, an Alzheimer variant syndrome; n = 5), and progressive nonfluent aphasia (PNFA; n = 9) in relation to 19 healthy age-matched individuals. We designed a novel neuropsychological battery to assess perception of musical patterns in the dimensions of pitch and temporal information (requiring detection of notes that deviated from the established pattern based on local or global sequence features) and musical scene analysis (requiring detection of a familiar tune within polyphonic harmony). Performance on these tests was referenced to generic auditory (timbral) deviance detection and recognition of familiar tunes and adjusted for general auditory working memory performance. Relative to healthy controls, patients with AD and LPA had group-level deficits of global pitch (melody contour) processing while patients with PNFA as a group had deficits of local (interval) as well as global pitch processing. There was substantial individual variation within syndromic groups. Taking working memory performance into account, no specific deficits of musical temporal processing, timbre processing, musical scene analysis, or tune recognition were identified. The findings suggest that particular aspects of music perception such as pitch pattern analysis may open a window on the processing of information streams in major dementia syndromes. The potential selectivity of musical deficits for particular dementia syndromes and particular dimensions of processing warrants further systematic investigation

    A physiological signature of sound meaning in dementia.

    Get PDF
    The meaning of sensory objects is often behaviourally and biologically salient and decoding of semantic salience is potentially vulnerable in dementia. However, it remains unclear how sensory semantic processing is linked to physiological mechanisms for coding object salience and how that linkage is affected by neurodegenerative diseases. Here we addressed this issue using the paradigm of complex sounds. We used pupillometry to compare physiological responses to real versus synthetic nonverbal sounds in patients with canonical dementia syndromes (behavioural variant frontotemporal dementia - bvFTD, semantic dementia - SD; progressive nonfluent aphasia - PNFA; typical Alzheimer's disease - AD) relative to healthy older individuals. Nonverbal auditory semantic competence was assessed using a novel within-modality sound classification task and neuroanatomical associations of pupillary responses were assessed using voxel-based morphometry (VBM) of patients' brain MR images. After taking affective stimulus factors into account, patients with SD and AD showed significantly increased pupil responses to real versus synthetic sounds relative to healthy controls. The bvFTD, SD and AD groups had a nonverbal auditory semantic deficit relative to healthy controls and nonverbal auditory semantic performance was inversely correlated with the magnitude of the enhanced pupil response to real versus synthetic sounds across the patient cohort. A region of interest analysis demonstrated neuroanatomical associations of overall pupil reactivity and differential pupil reactivity to sound semantic content in superior colliculus and left anterior temporal cortex respectively. Our findings suggest that autonomic coding of auditory semantic ambiguity in the setting of a damaged semantic system may constitute a novel physiological signature of neurodegenerative diseases

    Profiles of white matter tract pathology in frontotemporal dementia.

    Get PDF
    Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc

    Melody Processing Characterizes Functional Neuroanatomy in the Aging Brain

    Get PDF
    The functional neuroanatomical mechanisms underpinning cognition in the normal older brain remain poorly defined, but have important implications for understanding the neurobiology of aging and the impact of neurodegenerative diseases. Auditory processing is an attractive model system for addressing these issues. Here, we used fMRI of melody processing to investigate auditory pattern processing in normal older individuals. We manipulated the temporal (rhythmic) structure and familiarity of melodies in a passive listening, ‘sparse’ fMRI protocol. A distributed cortico-subcortical network was activated by auditory stimulation compared with silence; and within this network, we identified separable signatures of anisochrony processing in bilateral posterior superior temporal lobes; melodic familiarity in bilateral anterior temporal and inferior frontal cortices; and melodic novelty in bilateral temporal and left parietal cortices. Left planum temporale emerged as a ‘hub’ region functionally partitioned for processing different melody dimensions. Activation of Heschl’s gyrus by auditory stimulation correlated with the integrity of underlying cortical tissue architecture, measured using multi-parameter mapping. Our findings delineate neural substrates for analyzing perceptual and semantic properties of melodies in normal aging. Melody (auditory pattern) processing may be a useful candidate paradigm for assessing cerebral networks in the older brain and potentially, in neurodegenerative diseases of later life

    Delayed auditory feedback simulates features of nonfluent primary progressive aphasia.

    Get PDF
    The pathophysiology of nonfluent primary progressive aphasia (nfvPPA) remains poorly understood. Here, we compared quantitatively speech parameters in patients with nfvPPA versus healthy older individuals under altered auditory feedback, which has been shown to modulate normal speech output. Patients (n=15) and healthy volunteers (n=17) were recorded while reading aloud under delayed auditory feedback [DAF] with latency 0, 50 or 200 ms and under DAF at 200 ms plus 0.5 octave upward pitch shift. DAF in healthy older individuals was associated with reduced speech rate and emergence of speech sound errors, particularly at latency 200 ms. Up to a third of the healthy older group under DAF showed speech slowing and frequency of speech sound errors within the range of the nfvPPA cohort. Our findings suggest that (in addition to any anterior, primary language output disorder) these key features of nfvPPA may reflect distorted speech input signal processing, as simulated by DAF. DAF may constitute a novel candidate pathophysiological model of posterior dorsal cortical language pathway dysfunction in nfvPPA

    Identification of environmental sounds and melodies in syndromes of anterior temporal lobe degeneration

    Get PDF
    Recognition of nonverbal sounds in semantic dementia and other syndromes of anterior temporal lobe degeneration may determine clinical symptoms and help to define phenotypic profiles. However, nonverbal auditory semantic function has not been widely studied in these syndromes. Here we investigated semantic processing in two key nonverbal auditory domains - environmental sounds and melodies - in patients with semantic dementia (SD group; n=9) and in patients with anterior temporal lobe atrophy presenting with behavioural decline (TL group; n=7, including four cases with MAPT mutations) in relation to healthy older controls (n=20). We assessed auditory semantic performance in each domain using novel, uniform within-modality neuropsychological procedures that determined sound identification based on semantic classification of sound pairs. Both the SD and TL groups showed comparable overall impairments of environmental sound and melody identification; individual patients generally showed superior identification of environmental sounds than melodies, however relative sparing of melody over environmental sound identification also occurred in both groups. Our findings suggest that nonverbal auditory semantic impairment is a common feature of neurodegenerative syndromes with anterior temporal lobe atrophy. However, the profile of auditory domain involvement varies substantially between individuals
    • …
    corecore