9,272 research outputs found

    Multiobjective synchronization of coupled systems

    Get PDF
    Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications

    Shortest Path Computation with No Information Leakage

    Get PDF
    Shortest path computation is one of the most common queries in location-based services (LBSs). Although particularly useful, such queries raise serious privacy concerns. Exposing to a (potentially untrusted) LBS the client's position and her destination may reveal personal information, such as social habits, health condition, shopping preferences, lifestyle choices, etc. The only existing method for privacy-preserving shortest path computation follows the obfuscation paradigm; it prevents the LBS from inferring the source and destination of the query with a probability higher than a threshold. This implies, however, that the LBS still deduces some information (albeit not exact) about the client's location and her destination. In this paper we aim at strong privacy, where the adversary learns nothing about the shortest path query. We achieve this via established private information retrieval techniques, which we treat as black-box building blocks. Experiments on real, large-scale road networks assess the practicality of our schemes.Comment: VLDB201

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Self-reported food intake decreases over recording period in the National Diet and Nutrition Survey

    Get PDF
    This work was supported by funding from the Rural and Environment Science and Analytical Services Division (RESAS) programme of the Scottish Government. RESAS had no role in the design, analysis or writing of this article.Peer reviewedPostprin

    A Snapshot of J. L. Synge

    Full text link
    A brief description is given of the life and influence on relativity theory of Professor J. L. Synge accompanied by some technical examples to illustrate his style of work

    Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I

    Full text link
    We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19^\circ~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti

    Higher Spin Field Equation in a Virtual Black Hole Metric

    Get PDF
    In a quantum theory of gravity, fluctuations about the vacuum may be considered as Planck scale virtual black holes appearing and annihilating in pairs. Incident fields scattering from such fluctuations would lose quantum coherence. In a recent paper (hep-th/9705147), Hawking and Ross obtained an estimate for the magnitude of this loss in the case of a scalar field. Their calculation exploited the separability of the conformally invariant scalar wave equation in the electrovac C metric background, which is justified as a sufficiently good description of a virtual black hole pair in the limit considered. In anticipation of extending this result, the Teukolsky equations for incident fields of higher spin are separated on the vacuum C metric background and solved in the same limit. With the exception of spin 2 fields, these equations are shown in addition to be valid on the electrovac C metric background. The angular solutions are found to reduce to the spin- weighted spherical harmonics, and the radial solutions are found to approach hypergeometrics close to the horizons. By defining appropriate scattering boundary conditions, these solutions are then used to estimate the transmission and reflection coefficients for an incident field of spin s. The transmission coefficient is required in order to estimate the loss of quantum coherence of an incident field through scattering off virtual black holes.Comment: 23 pages, 3 figures, LaTeX, minor typo correcte

    Symmetries and novel universal properties of turbulent hydrodynamics in a symmetric binary fluid mixture

    Full text link
    We elucidate the universal properties of the nonequilibrium steady states (NESS) in a driven symmetric binary fluid mixture, an example of active advection, in its miscible phase. We use the symmetries of the equations of motion to establish the appropriate form of the structure functions which characterise the statistical properties of the NESS of a driven symmetric binary fluid mixture. We elucidate the universal properties described by the scaling exponents and the amplitude ratios. Our results suggest that these exponents and amplitude ratios vary continuously with the degree of crosscorrelations between the velocity and the gradient of the concentration fields. Furthermore, we demonstrate, in agreement with Celani et al, Phys. Rev. Lett., 89, 234502 (2002, that the conventional structure functions as used in passive scalar turbulence studies exhibit only simple scaling in the problem of symmetric binary fluid mixture even in the weak concentration limit. We also discuss possible experimental verifications of our results.Comment: To appear in JSTAT (letters) (2005

    Tunneling into a two-dimensional electron system in a strong magnetic field

    Full text link
    We investigate the properties of the one-electron Green's function in an interacting two-dimensional electron system in a strong magnetic field, which describes an electron tunneling into such a system. From finite-size diagonalization, we find that its spectral weight is suppressed near zero energy, reaches a maximum at an energy of about 0.2e2/ϵlc0.2e^{2}/\epsilon l_{c}, and decays exponentially at higher energies. We propose a theoretical model to account for the low-energy behavior. For the case of Coulomb interactions between the electrons, at even-denominator filling factors such as ν=1/2\nu=1/2, we predict that the spectral weight varies as eω0/ωe^{-\omega_0/|\omega|}, for ω0\omega\rightarrow 0
    corecore