22,194 research outputs found
CENTER-LINE PRESSURE DISTRIBUTIONS ON TWO-DIMENSIONAL BODIES WITH LEADING-EDGE ANGLES GREATER THAN THAT FOR SHOCK DETACHMENT AT MACH NUMBER 6 AND ANGLES OF ATTACK UP TO 25 DEG
Center-line pressure distribution on two- dimensional bodie
Canonical General Relativity on a Null Surface with Coordinate and Gauge Fixing
We use the canonical formalism developed together with David Robinson to st=
udy the Einstein equations on a null surface. Coordinate and gauge conditions =
are introduced to fix the triad and the coordinates on the null surface. Toget=
her with the previously found constraints, these form a sufficient number of
second class constraints so that the phase space is reduced to one pair of
canonically conjugate variables: \Ac_2\and\Sc^2. The formalism is related to
both the Bondi-Sachs and the Newman-Penrose methods of studying the
gravitational field at null infinity. Asymptotic solutions in the vicinity of
null infinity which exclude logarithmic behavior require the connection to fall
off like after the Minkowski limit. This, of course, gives the previous
results of Bondi-Sachs and Newman-Penrose. Introducing terms which fall off
more slowly leads to logarithmic behavior which leaves null infinity intact,
allows for meaningful gravitational radiation, but the peeling theorem does not
extend to in the terminology of Newman-Penrose. The conclusions are in
agreement with those of Chrusciel, MacCallum, and Singleton. This work was
begun as a preliminary study of a reduced phase space for quantization of
general relativity.Comment: magnification set; pagination improved; 20 pages, plain te
Hall effect encoding of brushless dc motors
Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member
Lagrangian and Hamiltonian for the Bondi-Sachs metrics
We calculate the Hilbert action for the Bondi-Sachs metrics. It yields the
Einstein vacuum equations in a closed form. Following the Dirac approach to
constrained systems we investigate the related Hamiltonian formulation.Comment: 8 page
Weak Gravitational Flexion
Flexion is the significant third-order weak gravitational lensing effect
responsible for the weakly skewed and arc-like appearance of lensed galaxies.
Here we demonstrate how flexion measurements can be used to measure galaxy halo
density profiles and large-scale structure on non-linear scales, via
galaxy-galaxy lensing, dark matter mapping and cosmic flexion correlation
functions. We describe the origin of gravitational flexion, and discuss its
four components, two of which are first described here. We also introduce an
efficient complex formalism for all orders of lensing distortion. We proceed to
examine the flexion predictions for galaxy-galaxy lensing, examining isothermal
sphere and Navarro, Frenk & White (NFW) profiles and both circularly symmetric
and elliptical cases. We show that in combination with shear we can precisely
measure galaxy masses and NFW halo concentrations. We also show how flexion
measurements can be used to reconstruct mass maps in 2-D projection on the sky,
and in 3-D in combination with redshift data. Finally, we examine the
predictions for cosmic flexion, including convergence-flexion
cross-correlations, and find that the signal is an effective probe of structure
on non-linear scales.Comment: 17 pages, including 12 figures, submitted to MNRA
End of the cosmic neutrino energy spectrum
There may be a high-energy cutoff of neutrino events in IceCube data. In
particular, IceCube does not observe either continuum events above 2 PeV, or
the Standard Model Glashow-resonance events expected at 6.3 PeV. There are also
no higher energy neutrino signatures in the ANITA and Auger experiments. This
absence of high-energy neutrino events motivates a fundamental restriction on
neutrino energies above a few PeV. We postulate a simple scenario to terminate
the neutrino spectrum that is Lorentz-invariance violating, but with a limiting
neutrino velocity that is always smaller than the speed of light. If the
limiting velocity of the neutrino applies also to its associated charged
lepton, then a significant consequence is that the two-body decay modes of the
charged pion are forbidden above two times the maximum neutrino energy, while
the radiative decay modes are suppressed at higher energies. Such stabilized
pions may serve as cosmic ray primaries.Comment: 6 pages. Version to appear in PL
Study of fault-tolerant software technology
Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance
Properties of Nucleon Resonances by means of a Genetic Algorithm
We present an optimization scheme that employs a Genetic Algorithm (GA) to
determine the properties of low-lying nucleon excitations within a realistic
photo-pion production model based upon an effective Lagrangian. We show that
with this modern optimization technique it is possible to reliably assess the
parameters of the resonances and the associated error bars as well as to
identify weaknesses in the models. To illustrate the problems the optimization
process may encounter, we provide results obtained for the nucleon resonances
(1230) and (1700). The former can be easily isolated and thus
has been studied in depth, while the latter is not as well known
experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction
Completeness of Wilson loop functionals on the moduli space of and -connections
The structure of the moduli spaces \M := \A/\G of (all, not just flat)
and connections on a n-manifold is analysed. For any
topology on the corresponding spaces \A of all connections which satisfies
the weak requirement of compatibility with the affine structure of \A, the
moduli space \M is shown to be non-Hausdorff. It is then shown that the
Wilson loop functionals --i.e., the traces of holonomies of connections around
closed loops-- are complete in the sense that they suffice to separate all
separable points of \M. The methods are general enough to allow the
underlying n-manifold to be topologically non-trivial and for connections to be
defined on non-trivial bundles. The results have implications for canonical
quantum general relativity in 4 and 3 dimensions.Comment: Plain TeX, 7 pages, SU-GP-93/4-
- …