13,298 research outputs found
Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries
Suppose that an -simplex is partitioned into convex regions having
disjoint interiors and distinct labels, and we may learn the label of any point
by querying it. The learning objective is to know, for any point in the
simplex, a label that occurs within some distance from that point.
We present two algorithms for this task: Constant-Dimension Generalised Binary
Search (CD-GBS), which for constant uses queries, and Constant-Region Generalised Binary
Search (CR-GBS), which uses CD-GBS as a subroutine and for constant uses
queries.
We show via Kakutani's fixed-point theorem that these algorithms provide
bounds on the best-response query complexity of computing approximate
well-supported equilibria of bimatrix games in which one of the players has a
constant number of pure strategies. We also partially extend our results to
games with multiple players, establishing further query complexity bounds for
computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in
Theorem 6, adds footnotes with additional comments and fixes typo
The Spin Holonomy Group In General Relativity
It has recently been shown by Goldberg et al that the holonomy group of the
chiral spin-connection is preserved under time evolution in vacuum general
relativity. Here, the underlying reason for the time-independence of the
holonomy group is traced to the self-duality of the curvature 2-form for an
Einstein space. This observation reveals that the holonomy group is
time-independent not only in vacuum, but also in the presence of a cosmological
constant. It also shows that once matter is coupled to gravity, the
"conservation of holonomy" is lost. When the fundamental group of space is
non-trivial, the holonomy group need not be connected. For each homotopy class
of loops, the holonomies comprise a coset of the full holonomy group modulo its
connected component. These cosets are also time-independent. All possible
holonomy groups that can arise are classified, and examples are given of
connections with these holonomy groups. The classification of local and global
solutions with given holonomy groups is discussed.Comment: 21 page
The Inverse Shapley Value Problem
For a weighted voting scheme used by voters to choose between two
candidates, the \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of
provide a measure of how much control each voter can exert over the overall
outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley
and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice
theory as a measure of the "influence" of voters. The \emph{Inverse Shapley
Value Problem} is the problem of designing a weighted voting scheme which
(approximately) achieves a desired input vector of values for the
Shapley-Shubik indices. Despite much interest in this problem no provably
correct and efficient algorithm was known prior to our work.
We give the first efficient algorithm with provable performance guarantees
for the Inverse Shapley Value Problem. For any constant \eps > 0 our
algorithm runs in fixed poly time (the degree of the polynomial is
independent of \eps) and has the following performance guarantee: given as
input a vector of desired Shapley values, if any "reasonable" weighted voting
scheme (roughly, one in which the threshold is not too skewed) approximately
matches the desired vector of values to within some small error, then our
algorithm explicitly outputs a weighted voting scheme that achieves this vector
of Shapley values to within error \eps. If there is a "reasonable" voting
scheme in which all voting weights are integers at most \poly(n) that
approximately achieves the desired Shapley values, then our algorithm runs in
time \poly(n) and outputs a weighted voting scheme that achieves the target
vector of Shapley values to within error $\eps=n^{-1/8}.
An Empirical Study of Finding Approximate Equilibria in Bimatrix Games
While there have been a number of studies about the efficacy of methods to
find exact Nash equilibria in bimatrix games, there has been little empirical
work on finding approximate Nash equilibria. Here we provide such a study that
compares a number of approximation methods and exact methods. In particular, we
explore the trade-off between the quality of approximate equilibrium and the
required running time to find one. We found that the existing library GAMUT,
which has been the de facto standard that has been used to test exact methods,
is insufficient as a test bed for approximation methods since many of its games
have pure equilibria or other easy-to-find good approximate equilibria. We
extend the breadth and depth of our study by including new interesting families
of bimatrix games, and studying bimatrix games upto size .
Finally, we provide new close-to-worst-case examples for the best-performing
algorithms for finding approximate Nash equilibria
Exciton mediated one phonon resonant Raman scattering from one-dimensional systems
We use the Kramers-Heisenberg approach to derive a general expression for the
resonant Raman scattering cross section from a one-dimensional (1D) system
explicitly accounting for excitonic effects. The result should prove useful for
analyzing the Raman resonance excitation profile lineshapes for a variety of 1D
systems including carbon nanotubes and semiconductor quantum wires. We apply
this formalism to a simple 1D model system to illustrate the similarities and
differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure
A self-organizing random immigrants genetic algorithm for dynamic optimization problems
This is the post-print version of the article. The official published version can be obtained from the link below - Copyright @ 2007 SpringerIn this paper a genetic algorithm is proposed where the worst individual and individuals with indices close to its index are replaced in every generation by randomly generated individuals for dynamic optimization problems. In the proposed genetic algorithm, the replacement of an individual can affect other individuals in a chain reaction. The new individuals are preserved in a subpopulation which is defined by the number of individuals created in the current chain reaction. If the values of fitness are similar, as is the case with small diversity, one single replacement can affect a large number of individuals in the population. This simple approach can take the system to a self-organizing behavior, which can be useful to control the diversity level of the population and hence allows the genetic algorithm to escape from local optima once the problem changes due to the dynamics.This work was supported by FAPESP (Proc. 04/04289-6)
Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology
Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Librar
Chirality dependence of the radial breathing phonon mode density in single wall carbon nanotubes
A mass and spring model is used to calculate the phonon mode dispersion for
single wall carbon nanotubes (SWNTs) of arbitrary chirality. The calculated
dispersions are used to determine the chirality dependence of the radial
breathing phonon mode (RBM) density. Van Hove singularities, usually discussed
in the context of the single particle electronic excitation spectrum, are found
in the RBM density of states with distinct qualitative differences for zig zag,
armchair and chiral SWNTs. The influence the phonon mode density has on the two
phonon resonant Raman scattering cross-section is discussed.Comment: 6 pages, 2 figures, submitted to Phys. Rev.
Nonmalignant Features Associated with Inherited Colorectal Cancer Syndromes-Clues for Diagnosis
Simple Summary: Familiarity with nonmalignant features and comorbidities of cancer predisposition syndromes may raise awareness and assist clinicians in the diagnosis and interpretation of molecular test results. Genetic predisposition to colorectal cancer (CRC) should be suspected mainly in young patients, in patients with significant family histories, multiple polyps, mismatch repair-deficient tumors, and in association with malignant or nonmalignant comorbidities. The aim of this review is to describe the main nonmalignant comorbidities associated with selected CRC predisposition syndromes that may serve as valuable diagnostic clues for clinicians and genetic professionals.& nbsp;Genetic diagnosis of affected individuals and predictive testing of their at-risk relatives, combined with intensive cancer surveillance, has an enormous cancer-preventive potential in these families. A lack of awareness may be part of the reason why the underlying germline cause remains unexplained in a large proportion of patients with CRC. Various extracolonic features, mainly dermatologic, ophthalmic, dental, endocrine, vascular, and reproductive manifestations occur in many of the cancer predisposition syndromes associated with CRC and polyposis. Some are mediated via the WNT, TGF-beta, or mTOR pathways. However the pathogenesis of most features is still obscure. Here we review the extracolonic features of the main syndromes, the existing information regarding their prevalence, and the pathways involved in their pathogenesis. This knowledge could be useful for care managers from different professional disciplines, and used to raise awareness, enable diagnosis, and assist in the process of genetic testing and interpretation
- …