20,009 research outputs found

    A Hands-On, Active Learning Approach to Increasing Manufacturing Knowledge in Engineering Students

    Get PDF
    This paper describes a new learning module implemented as part of the senior capstone design course at Marquette University to teach engineering students about basic manufacturing processes, lean manufacturing principles, and design for manufacturability. The module includes several examples of active and student centered learning as part of an in-class assembly line simulation exercise. Students reflected on this experience, and suggested process improvements to save time, reduce cost and waste, and improve the assembly line process. They learned of the importance of manufacturing documentation, process design, and design for assembly. At the end of the module, students understood the importance of designing a product not only for the end user, but also for the assemblers and inspectors. Details of the module design and implementation will be presented along with comments from students

    Evidence of Skyrmion excitations about ν=1\nu =1 in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission

    Full text link
    We observe a dramatic reduction in the degree of spin-polarization of a two-dimensional electron gas in a magnetic field when the Fermi energy moves off the mid-point of the spin-gap of the lowest Landau level, ν=1\nu=1. This rapid decay of spin alignment to an unpolarized state occurs over small changes to both higher and lower magnetic field. The degree of electron spin polarization as a function of ν\nu is measured through the magneto-absorption spectra which distinguish the occupancy of the two electron spin states. The data provide experimental evidence for the presence of Skyrmion excitations where exchange energy dominates Zeeman energy in the integer quantum Hall regime at ν=1\nu=1

    Ion composition and drift observations in the nighttime equatorial ionosphere

    Get PDF
    The first in situ measurements of ion composition in the nighttime equatorial E and F region ionospheres (90-300 km) are presented and discussed. These profiles were obtained by two rocket-borne ion mass spectrometers launched from Thumba, India on March 9-10, 1970 at solar zenith angles of 112 deg and 165 deg. Ionosonde data established that the composition was measured at times bounding a period of F region downward drift. During this period the ions O(+) and N(+) were enhanced by one to three orders of magnitude between 220 and 300 km. Below the drift region (200 km), O(+) ceased to be the major ionic constituent, but the concentrations of O(+) and N(+) remained larger than predicted from known radiation sources and loss processes. Here also, both the O2(+) and NO(+) profiles retained nearly the same shape and magnitude throughout the night in agreement with theories assuming scattered UV radiation to be the maintaining source. Light metallic ions including Mg(+), Na(+) and possibly Si(+) were observed to altitude approaching 300 km, while the heavier ions Ca(+) and K(+) were seen in reduced quantity to 200 km. All metal ion profiles exhibited changes which can be ascribed to vertical drifting

    On the Existence of Radiation Gauges in Petrov type II spacetimes

    Get PDF
    The radiation gauges used by Chrzanowski (his IRG/ORG) for metric reconstruction in the Kerr spacetime seem to be over-specified. Their specification consists of five conditions: four, which we treat here as valid gauge conditions, plus an additional condition on the trace of the metric perturbation. In this work, we utilize a newly developed form of the perturbed Einstein equations to establish a condition -- on a particular tetrad component of the stress-energy tensor -- under which the full IRG/ORG can be imposed. Using gauge freedom, we are able to impose the full IRG for Petrov type II and type D backgrounds, using a different tetrad for each case. As a specific example, we work through the process of imposing the IRG in a Schwarzschild background, using a more traditional approach. Implications for metric reconstruction using the Teukolsky curvature perturbations in type D spacetimes are briefly discussed.Comment: 21 pages, uses iop style files. v2: proved a stronger result for type II backgrounds, added a subsection on remaining gauge freedom in the full IRG and improved calrity and readability throughout due to insightful referee comments; published as Class. Quantum Grav. 24 (2007) 2367-238

    The Riemann-Lebesgue theorem on groups

    Get PDF

    The ILR School at Fifty: Voices of the Faculty, Alumni & Friends (Full Text)

    Get PDF
    A collection of reflections on the first fifty years of the School of Industrial and Labor Relations at Cornell University. Compiled by Robert B. McKersie, J. Gormly Miller, Robert L. Aronson, and Robert R. Julian. Edited by Elaine Gruenfeld Goldberg. It was the hope of the compilers that the reflections contained in this book would both kindle memories of the school and stimulate interest on the part of future generations of ILRies who have not yet shared in its special history. Dedicated to the Memory of J. Gormly Miller, 1914-1995. Copyright 1996 by Cornell University. All rights reserved

    Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    Get PDF
    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor
    corecore