619 research outputs found

    Mathematical modelling of polyamine metabolism in bloodstream-form trypanosoma brucei: An application to drug target identification

    Get PDF
    © 2013 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis article has been made available through the Brunel Open Access Publishing Fund.We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.The work was carried out under a PhD programme partly funded by Prof. Ray Welland, School of Computing Science, University of Glasgo

    A new method for measuring torsional deformity in scoliosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of spinal rotational and torsional deformity in the etiology and the management of scoliosis are well-recognized. For measuring the posterior spinal component rotation, Ho's method was reported to be reliable. However, there is no practical method to measure the anterior spinal component rotation. Moreover, there is also no method to quantify the spinal torsional deformity in scoliosis. The goal of this study is to characterize scoliosis and its deformity to hypothesize the etiology and the development of scoliosis, and to establish a new method for the measurement of the vertebral body rotation and spinal torsional deformity in scoliosis using CT scans.</p> <p>Methods</p> <p>Pre-operative CT scans of 25 non-congenital scoliosis patients were recruited and the apical vertebral rotation was measured by a newly developed method and Ho's method. Ho's method adopts the laminae as the rotational landmark. For a new method to measure the apical vertebral rotation, the posterior point just beneath each pedicle was used as a landmark. For quantifying the spinal torsional deformity angle, the rotational angle difference between the two methods was calculated.</p> <p>Results</p> <p>Intraobserver and interobserver reliability analyses showed both methods to be reliable. Apical vertebral rotation revealed 13.9 ± 6.8 (mean ± standard deviation) degrees by the new method and 7.9 ± 6.3 by Ho's method. Right spinal rotation was assigned a positive value. The discrepancy of rotation (6.1 ± 3.9 degrees), meaning that the anterior component rotated more than the posterior component, was considered to express the spinal torsional deformity to the convex side.</p> <p>Conclusions</p> <p>We have developed an easy, reliable and practical method to measure the rotation of the spinal anterior component using a CT scan. Furthermore, we quantified the spinal torsional deformity to the convex side in scoliosis by comparing the rotation between the anterior and posterior components.</p

    Tailoring hyper-heuristics to specific instances of a scheduling problem using affinity and competence functions

    Get PDF
    Hyper-heuristics are high level heuristics which coordinate lower level ones to solve a given problem. Low level heuristics, however, are not all as competent/good as each other at solving the given problem and some do not work together as well as others. Hence the idea of measuring how good they are (competence) at solving the problem and how well they work together (their affinity). Models of the affinity and competence properties are suggested and evaluated using previous information on the performance of the simple low level heuristics. The resulting model values are used to improve the performance of the hyper-heuristic by tailoring it not only to the specific problem but the specific instance being solved. The test case is a hard combinatorial problem, namely the Hybrid Flow Shop scheduling problem. Numerical results on randomly generated as well as real-world instances are included

    Deletion of the WD40 Domain of LRRK2 in Zebrafish Causes Parkinsonism-Like Loss of Neurons and Locomotive Defect

    Get PDF
    LRRK2 plays an important role in Parkinson's disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons. In contrast, the deletion of the WD40 domain of zLRRK2 by morpholinos targeting splicing did not induce severe embryonic developmental defects; rather it caused Parkinsonism-like phenotypes, including loss of dopaminergic neurons in diencephalon and locomotion defects. These neurodegenerative and locomotion defects could be rescued by over-expressing zLRRK2 or hLRRK2 mRNA. The administration of L-dopa could also rescue the locomotion defects, but not the neurodegeneration. Taken together, our results demonstrate that zLRRK2 is an ortholog of hLRRK2 and that the deletion of WD40 domain of zLRRK2 provides a disease model for PD

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Centromere Plasmid: A New Genetic Tool for the Study of Plasmodium falciparum

    Get PDF
    The introduction of transgenes into Plasmodium falciparum, a highly virulent human malaria parasite, has been conducted either by single crossover recombination or by using episomal plasmids. However, these techniques remain insufficient because of the low transfection efficiency and the low frequency of recombination. To improve the genetic manipulation of P. falciparum, we developed the centromere plasmid as a new genetic tool. First, we attempted to clone all of the predicted centromeres from P. falciparum into E. coli cells but failed because of the high A/T contents of these sequences. To overcome this difficulty, we identified the common sequence features of the centromere of Plasmodium spp. and designed a small centromere that retained those features. The centromere plasmid constructed with the small centromere sequence, pFCEN, segregated into daughter parasites with approximately 99% efficiency, resulting in the stable maintenance of this plasmid in P. falciparum even in the absence of drug selection. This result demonstrated that the small centromere sequence harboured in pFCEN could function as an actual centromere in P. falciparum. In addition, transgenic parasites were more rapidly generated when using pFCEN than when using the control plasmid, which did not contain the centromere sequence. Furthermore, in contrast to the control plasmid, pFCEN did not form concatemers and, thus, was maintained as a single copy over multiple cell divisions. These unique properties of the pFCEN plasmid will solve the current technical limitations of the genetic manipulation of P. falciparum, and thus, this plasmid will become a standard genetic tool for the study of this parasite

    Muscle Fiber Type-Dependent Differences in the Regulation of Protein Synthesis

    Get PDF
    This study examined fiber type-dependent differences in the regulation of protein synthesis in individual muscle fibers found within the same whole muscle. Specifically, the in vivo SUrface SEnsing of Translation (SUnSET) methodology was used to measure protein synthesis in type 1, 2A, 2X and 2B fibers of the mouse plantaris muscle, in response to food deprivation (FD), and mechanical overload induced by synergist ablation (SA). The results show that 48 h of FD induced a greater decrease in protein synthesis in type 2X and 2B fibers compared to type 1 and 2A fibers. Type 2X and 2B fibers also had the largest FD-induced decrease in total S6 protein and Ser240/244 S6 phosphorylation, respectively. Moreover, only type 2X and 2B fibers displayed a FD-induced decrease in cross-sectional area (CSA). Ten days of SA also induced fiber type-dependent responses, with type 2B fibers having the smallest SA-induced increases in protein synthesis, CSA and Ser240/244 S6 phosphorylation, but the largest increase in total S6 protein. Embryonic myosin heavy chain (MHCEmb) positive fibers were also found in SA muscles and the protein synthesis rates, levels of S6 Ser240/244 phosphorylation, and total S6 protein content, were 3.6-, 6.1- and 2.9-fold greater than that found in fibers from control muscles, respectively. Overall, these results reveal differential responses in the regulation of protein synthesis and fiber size between fiber types found within the same whole muscle. Moreover, these findings demonstrate that changes found at the whole muscle level do not necessarily reflect changes in individual fiber types

    LYL1 Degradation by the Proteasome Is Directed by a N-Terminal PEST Rich Site in a Phosphorylation-Independent Manner

    Get PDF
    Background: The Lymphoblastic leukemia 1 (LYL1) gene is a proto-oncogenic transcription factor found upregulated in patients with T-cell acute lymphoblastic leukemia (T-cell ALL). Initially, the upregulation was described to be as a result of a translocation. However, further studies revealed that transcriptional upregulation of LYL1could also occur without translocations. In addition, post-translational mechanisms, such as protein degradation could influence LYL1 expression as well. Methodology/Principal Findings: In this study, we considered possible post-translational regulation of Lyl1, and investigated fundamental mechanisms governing LYL1 degradation in cell-based culture assays. We identify a PEST sequence motif located in the N-terminus of LYL1, which determines the efficiency of LYL1 degradation by the proteasome. The absence of the PEST degradation site leads to accumulation or upregulation of LYL1. We also show that LYL1 is phosphorylated by MAPK at S36, and determined that proteasomal degradation of LYL1 occurs in a phosphorylationindependent manner. Conclusions/Significance: Understanding LYL1 degradation is a step forward not only towards deciphering the normal function and regulation of LYL1, but could suggest post-translational mechanisms for upregulation of LYL1 that ma
    corecore