2,318 research outputs found
Expanding perfect fluid generalizations of the C-metric
We reexamine Petrov type D gravitational fields generated by a perfect fluid
with spatially homogeneous energy density and in which the flow lines form a
timelike non-shearing and non-rotating congruence. It is shown that the
anisotropic such spacetimes, which comprise the vacuum C-metric as a limit
case, can have \emph{non-zero} expansion, contrary to the conclusion in the
original investigation by Barnes (Gen. Rel. Grav. 4, 105 (1973)). This class
consists of cosmological models with generically one and at most two Killing
vectors. We construct their line element and discuss some important properties.
The methods used in this investigation incite to deduce testable criteria
regarding shearfree normality and staticity op Petrov type spacetimes in
general, which we add in an appendix.Comment: 16 pages, extended and amended versio
Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2
We demonstrate the continuous and reversible tuning of the optical band gap
of suspended monolayer MoS2 membranes by as much as 500 meV by applying very
large biaxial strains. By using chemical vapor deposition (CVD) to grow
crystals that are highly impermeable to gas, we are able to apply a pressure
difference across suspended membranes to induce biaxial strains. We observe the
effect of strain on the energy and intensity of the peaks in the
photoluminescence (PL) spectrum, and find a linear tuning rate of the optical
band gap of 99 meV/%. This method is then used to study the PL spectra of
bilayer and trilayer devices under strain, and to find the shift rates and
Gr\"uneisen parameters of two Raman modes in monolayer MoS2. Finally, we use
this result to show that we can apply biaxial strains as large as 5.6% across
micron sized areas, and report evidence for the strain tuning of higher level
optical transitions.Comment: Nano Lett., Article ASA
Uptake of hepatitis C specialist services and treatment following diagnosis by dried blood spot in Scotland
Background:
Dried blood spot (DBS) testing for hepatitis C (HCV) was introduced to Scotland in 2009. This minimally invasive specimen provides an alternative to venipuncture and can overcome barriers to testing in people who inject drugs (PWID).
Objectives:
The objective of this study was to determine rates and predictors of: exposure to HCV, attendance at specialist clinics and anti-viral treatment initiation among the DBS tested population in Scotland.
Study design:
DBS testing records were deterministically linked to the Scottish HCV Clinical database prior to logistic regression analysis.
Results:
In the first two years of usage in Scotland, 1322 individuals were tested by DBS of which 476 were found to have an active HCV infection. Linkage analysis showed that 32% had attended a specialist clinic within 12 months of their specimen collection date and 18% had begun anti-viral therapy within 18 months of their specimen collection date. A significantly reduced likelihood of attendance at a specialist clinic was evident amongst younger individuals (<35 years), those of unknown ethnic origin and those not reporting injecting drug use as a risk factor.
Conclusion:
We conclude that DBS testing in non-clinical settings has the potential to increase diagnosis and, with sufficient support, treatment of HCV infection among PWID
Fold Lens Flux Anomalies: A Geometric Approach
We develop a new approach for studying flux anomalies in quadruply-imaged
fold lens systems. We show that in the absence of substructure, microlensing,
or differential absorption, the expected flux ratios of a fold pair can be
tightly constrained using only geometric arguments. We apply this technique to
11 known quadruple lens systems in the radio and infrared, and compare our
estimates to the Monte Carlo based results of Keeton, Gaudi, and Petters. We
show that a robust estimate for a flux ratio from a smoothly varying potential
can be found, and at long wavelengths those lenses deviating from from this
ratio almost certainly contain significant substructure.Comment: 16 pages, including 8 figure
Recommended from our members
Late Ediacaran Redox Stability and Metazoan Evolution
The Neoproterozoic arrival of animals fundamentally changed Earth's biological and geochemical trajectory. Since the early description of Ediacaran and Cambrian animal fossils, a vigorous debate has emerged about the drivers underpinning their seemingly rapid radiation. Some argue for predation and ecology as central to diversification, whereas others point to a changing chemical environment as the trigger. In both cases, questions of timing and feedbacks remain unresolved. Through these debates, the last fifty years of work has largely converged on the concept that a change in atmospheric oxygen levels, perhaps manifested indirectly as an oxygenation of the deep ocean, was causally linked to the initial diversification of large animals. What has largely been absent, but is provided in this study, is a multi-proxy stratigraphic test of this hypothesis. Here, we describe a coupled geochemical and paleontological investigation of Neoproterozoic sedimentary rocks from northern Russia. In detail, we provide iron speciation data, carbon and sulfur isotope compositions, and major element abundances from a predominantly siliciclastic succession (spanning>1000 m) sampled by the Kel'tminskaya-1 drillcore. Our interpretation of these data is consistent with the hypothesis that the threshold required for diversification of animals with high metabolic oxygen demands was crossed prior to or during the Ediacaran Period. Redox stabilization of shallow marine environments was, however, also critical and only occurred about 560 million years ago (Ma), when large motile bilaterians first enter the regional stratigraphic record. In contrast, neither fossils nor geochemistry lend support to the hypothesis that ecological interactions altered the course of evolution in the absence of environmental change. Together, the geochemical and paleontological records suggest a coordinated transition from low oxygen oceans sometime before the Marinoan (~635 Ma) ice age, through better oxygenated but still redox-unstable shelves of the early Ediacaran Period, to the fully and persistently oxygenated marine environments characteristic of later Ediacaran successions that preserve the first bilaterian macrofossils and trace fossils.Earth and Planetary SciencesOrganismic and Evolutionary Biolog
Evolution on a smooth landscape
We study in detail a recently proposed simple discrete model for evolution on
smooth landscapes. An asymptotic solution of this model for long times is
constructed. We find that the dynamics of the population are governed by
correlation functions that although being formally down by powers of (the
population size) nonetheless control the evolution process after a very short
transient. The long-time behavior can be found analytically since only one of
these higher-order correlators (the two-point function) is relevant. We compare
and contrast the exact findings derived herein with a previously proposed
phenomenological treatment employing mean field theory supplemented with a
cutoff at small population density. Finally, we relate our results to the
recently studied case of mutation on a totally flat landscape.Comment: Revtex, 15 pages, + 4 embedded PS figure
Relative Permeability Experiments of Carbon Dioxide Displacing Brine and Their Implications for Carbon Sequestration
To mitigate anthropogenically induced climate change and ocean acidification, net carbon dioxide emissions to the atmosphere must be reduced. One proposed option is underground CO2 disposal. Large-scale injection of CO2 into the Earth’s crust requires an understanding of the multiphase flow properties of high-pressure CO2 displacing brine. We present laboratory-scale core flooding experiments designed to measure CO2 endpoint relative permeability for CO2 displacing brine at in situ pressures, salinities, and temperatures. Endpoint drainage CO2 relative permeabilities for liquid and supercritical CO2 were found to be clustered around 0.4 for both the synthetic and natural media studied. These values indicate that relative to CO2, water may not be strongly wetting the solid surface. Based on these results, CO2 injectivity will be reduced and pressure-limited reservoirs will have reduced disposal capacity, though area-limited reservoirs may have increased capacity. Future reservoir-scale modeling efforts should incorporate sensitivity to relative permeability. Assuming applicability of the experimental results to other lithologies and that the majority of reservoirs are pressure limited, geologic carbon sequestration would require approximately twice the number of wells for the same injectivity
Energy of Isolated Systems at Retarded Times as the Null Limit of Quasilocal Energy
We define the energy of a perfectly isolated system at a given retarded time
as the suitable null limit of the quasilocal energy . The result coincides
with the Bondi-Sachs mass. Our is the lapse-unity shift-zero boundary value
of the gravitational Hamiltonian appropriate for the partial system
contained within a finite topologically spherical boundary . Moreover, we show that with an arbitrary lapse and zero shift the same
null limit of the Hamiltonian defines a physically meaningful element in the
space dual to supertranslations. This result is specialized to yield an
expression for the full Bondi-Sachs four-momentum in terms of Hamiltonian
values.Comment: REVTEX, 16 pages, 1 figur
- …