12,996 research outputs found

    Core-competitive Auctions

    Full text link
    One of the major drawbacks of the celebrated VCG auction is its low (or zero) revenue even when the agents have high value for the goods and a {\em competitive} outcome could have generated a significant revenue. A competitive outcome is one for which it is impossible for the seller and a subset of buyers to `block' the auction by defecting and negotiating an outcome with higher payoffs for themselves. This corresponds to the well-known concept of {\em core} in cooperative game theory. In particular, VCG revenue is known to be not competitive when the goods being sold have complementarities. A bottleneck here is an impossibility result showing that there is no auction that simultaneously achieves competitive prices (a core outcome) and incentive-compatibility. In this paper we try to overcome the above impossibility result by asking the following natural question: is it possible to design an incentive-compatible auction whose revenue is comparable (even if less) to a competitive outcome? Towards this, we define a notion of {\em core-competitive} auctions. We say that an incentive-compatible auction is α\alpha-core-competitive if its revenue is at least 1/α1/\alpha fraction of the minimum revenue of a core-outcome. We study the Text-and-Image setting. In this setting, there is an ad slot which can be filled with either a single image ad or kk text ads. We design an O(lnlnk)O(\ln \ln k) core-competitive randomized auction and an O(ln(k))O(\sqrt{\ln(k)}) competitive deterministic auction for the Text-and-Image setting. We also show that both factors are tight

    Relativistic three-body recombination with the QED vacuum

    Full text link
    Electron-positron pair annihilation into a single photon is studied when a second free electron is present. Focussing on the relativistic regime, we show that the photon emitted in the three-lepton interaction may exhibit distinct angular distributions and polarization properties. Moreover, the process can dominate over two-photon annihilation in relativistic electron-positron plasmas of few-MeV temperature. An analogy with three-body recombination of electrons with ions is drawn.Comment: 5 pages, 4 figure

    Venture Capitalists\u27 Confidence, Capital Commitments, and Capital Investments

    Get PDF
    Confidence among consumers and managers continues to be a closely watched economic indicator. Venture capitalists are essential in the development of many high-growth ventures; however, VC sentiment has not before been systematically tracked. We surveyed VC confidence quarterly since Q1 2004 and find that increasing VC confidence is coincident with increasing VC investment; however, VC confidence decreases one quarter after their increased investment activity, possibly due to buyer\u27s remorse. Additionally, VC confidence decreases one quarter after increasing capital commitments to VC industry funds, possibly due to concern of too much money chasing too few good deals

    Novel A-B type oscillations in a 2-D electron gas in inhomogenous magnetic fields

    Full text link
    We present results from a quantum and semiclassical theoretical study of the ρxy\rho_{xy} and ρxx\rho_{xx} resistivities of a high mobility 2-D electron gas in the presence of a dilute random distribution of tubes with magnetic flux Φ\Phi and radius RR, for arbitrary values of kfRk_f R and F=eΦ/hF=e\Phi/h. We report on novel Aharonov-Bohm type oscillations in ρxy\rho_{xy} and ρxx\rho_{xx}, related to degenerate quantum flux tube resonances, that satisfy the selection rule (kfR)2=4F(n+12){(k_fR)}^2=4F(n+{1\over 2}), with nn an integer. We discuss possible experimental conditions where these oscillations may be observed.Comment: 11 pages REVTE

    Structure of 10N in 9C+p resonance scattering

    Full text link
    The structure of exotic nucleus 10N was studied using 9C+p resonance scattering. Two L=0 resonances were found to be the lowest states in 10N. The ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2- or 1- spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.

    End of the cosmic neutrino energy spectrum

    Full text link
    There may be a high-energy cutoff of neutrino events in IceCube data. In particular, IceCube does not observe either continuum events above 2 PeV, or the Standard Model Glashow-resonance events expected at 6.3 PeV. There are also no higher energy neutrino signatures in the ANITA and Auger experiments. This absence of high-energy neutrino events motivates a fundamental restriction on neutrino energies above a few PeV. We postulate a simple scenario to terminate the neutrino spectrum that is Lorentz-invariance violating, but with a limiting neutrino velocity that is always smaller than the speed of light. If the limiting velocity of the neutrino applies also to its associated charged lepton, then a significant consequence is that the two-body decay modes of the charged pion are forbidden above two times the maximum neutrino energy, while the radiative decay modes are suppressed at higher energies. Such stabilized pions may serve as cosmic ray primaries.Comment: 6 pages. Version to appear in PL

    Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation

    Full text link
    The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves.Comment: 36 pages, revtex4, no figures, final published versio
    corecore