37 research outputs found

    Transanular interaction in [2.2]phanes: models for dimers?

    Get PDF
    The emission spectra of pseudo-ortho 3 and pseudo-geminal-4,7,12,15-tetramethoxy[2.2]-paracyclophane 3 were measured in glass matrices at 1.3 K. Furthermore, the zero field splitting parameters D and E and the decay rate constants ki of the excited triplet state were studied by optical detection of magnetic resonance in zero field. The results were compared with the corresponding monomer 1,4-dimethyl-2,5-dimethoxybenzene

    Influence of an identified dimer vibration on the emission spectrum of [2,2]paracyclophane

    Get PDF
    The emission spectrum of polycrystalline [2,2]paracylophane shows a resolved vibronic structure with a 241 cm−1 progression at He temperatures. The dependence of the energy of this mode upon selective deuteration in combination with results from FIR and Raman spectra could be used to identify the mode as a torsional dimer vibration. The emission spectra could be simulated assuming a linear coupling of the torsional mode to the electronic transitions with coupling strengths of S = 10 (fluorescence) and S = 13 (phosphorescence). This corresponds to an equilibrium displacement of the benzene rings under electronic excitation by a torsional angle of 10.6° (S1) and 12.1° (T1), in addition to the small torsion in the ground state S0 by about 3°

    Design and Performance of a Conduction-Cooled HTS Magnet in the Radio-Blackout Experiment COMBIT

    Get PDF
    In the framework of the Helmholtz-Russia Joint Research Group (HRJRG) „COMBIT“ we developed a conduction-cooled HTS magnet to provide a high magnetic field for a radio blackout mitigation experiment in the arc-heated wind tunnel L2K at the German Aerospace Center in Cologne. The radio blackout phenomenon is well-known since the early days of space exploration. During hyper-sonic flights or during reentry in a planet\u27s atmosphere a dense plasma layer can form at the surface of the space vehicle leading to mitigation or reflection of radio waves. As a consequence voice communication with ground stations and GPS data telemetry can be disturbed. The goal of “COMBIT” was to demonstrate that the radio blackout can be mitigated by a local reduction of the plasma density in the vicinity of senders and antennas by magneto-hydrodynamic effects using crossed electric and magnetic fields. In order to generate a high magnetic field in the plasma we developed a conduction-cooled HTS magnet and a cryogenic system that is able to withstand the high temperatures in the plasma. The HTS magnet was made with RE-Ba-Cu-O coated conductors and has an outer diameter of only 70 mm. Despite the small size which is a consequence of the experimental boundary conditions the magnet was able to generate a high and variable magnetic field outside the cryostat in the plasma. In several measurement campaigns, the magnetic field reached up to 2 T in the plasma, corresponding to a maximum magnetic field of 5.16 T at the conductor. Mitigation of the radio blackout could be demonstrated successfully. After an introduction to the radio blackout phenomenon we present the design of the conduction-cooled HTS magnet and the cryogenic system and discuss their performance during the experimental campaigns
    corecore