44 research outputs found

    A Longitudinally Extensive Spinal Cord Lesion Restricted to Gray Matter in an Adolescent Male

    Get PDF
    Longitudinally extensive spinal cord lesions (LECL) restricted to gray matter are poorly understood as are their neurodevelopmental repercussions in children. We herein report the critical case of a 13-year-old male presenting with progressive quadriparesis found to have cervical LECL restricted to the anterior horns. Challenged with a rare diagnostic dilemma, the clinical team systematically worked through potential vascular, genetic, infectious, rheumatologic, and paraneoplastic diagnoses before assigning a working diagnosis of acute inflammatory myelopathy. Nuanced consideration of and workup for both potential ischemic causes (arterial dissection, fibrocartilaginous embolism, vascular malformation) and specific inflammatory conditions including Transverse Myelitis, Neuromyelitis Optica Spectrum Disorders (NMOSD), Multiple Sclerosis (MS), Acute Disseminated Encephalomyelitis (ADEM), and Acute Flaccid Myelitis (AFM) is explained in the context of a comprehensive systematic review of the literature on previous reports of gray matter-restricted longitudinally extensive cord lesions in children. Treatment strategy was ultimately based on additional literature review of treatment-refractory acute inflammatory neurological syndromes in children. A combination of high-dose steroids and plasmapheresis was employed with significant improvement in functional outcome, suggesting a potential benefit of combination immune-modulatory treatment in these patients. This case furthermore highlights quality clinical reasoning with respect to the elusive nature of diagnosis, nuances in neuroimaging, and multifocal treatment strategies in pediatric LECL

    The Biomedical Entrepreneurship Skills Development Program for the Advancement of Research Translation: Foundations of Biomedical Startups course, metrics, and impact

    Get PDF
    Abstract Background/Objective: A growing number of biomedical doctoral graduates are entering the biotechnology and industry workforce, though most lack training in business practice. Entrepreneurs can benefit from venture creation and commercialization training that is largely absent from standard biomedical educational curricula. The NYU Biomedical Entrepreneurship Educational Program (BEEP) seeks to fill this training gap to prepare and motivate biomedical entrepreneurs to develop an entrepreneurial skill set, thus accelerating the pace of innovation in technology and business ventures. Methods: The NYU BEEP Model was developed and implemented with funding from NIDDK and NCATS. The program consists of a core introductory course, topic-based interdisciplinary workshops, venture challenges, on-line modules, and mentorship from experts. Here, we evaluate the efficacy of the core, introductory course, “Foundations of Biomedical Startups,” through the use of pre/post-course surveys and free-response answers. Results: After 2 years, 153 participants (26% doctoral students, 23% post-doctoral PhDs, 20% faculty, 16% research staff, 15% other) have completed the course. Evaluation data show self-assessed knowledge gain in all domains. The percentage of students rating themselves as either “competent” or “on the way to being an expert” in all areas was significantly higher post-course (P < 0.05). In each content area, the percentages of participants rating themselves as “very interested” increased post-course. 95% of those surveyed reported the course met its objectives, and 95% reported a higher likelihood of pursuing commercialization of discoveries post-course. Conclusion: NYU BEEP can serve as a model to develop similar curricula/programs to enhance entrepreneurial activity of early-stage researchers

    Hereditary sensory and autonomic neuropathies: types II, III, and IV

    Get PDF
    The hereditary sensory and autonomic neuropathies (HSAN) encompass a number of inherited disorders that are associated with sensory dysfunction (depressed reflexes, altered pain and temperature perception) and varying degrees of autonomic dysfunction (gastroesophageal reflux, postural hypotention, excessive sweating). Subsequent to the numerical classification of four distinct forms of HSAN that was proposed by Dyck and Ohta, additional entities continue to be described, so that identification and classification are ongoing. As a group, the HSAN are rare diseases that affect both sexes. HSAN III is almost exclusive to individuals of Eastern European Jewish extraction, with incidence of 1 per 3600 live births. Several hundred cases with HSAN IV have been reported. The worldwide prevalence of HSAN type II is very low. This review focuses on the description of three of the disorders, HSAN II through IV, that are characterized by autosomal recessive inheritance and onset at birth. These three forms of HSAN have been the most intensively studied, especially familial dysautonomia (Riley-Day syndrome or HSAN III), which is often used as a prototype for comparison to the other HSAN. Each HSAN disorder is likely caused by different genetic errors that affect specific aspects of small fiber neurodevelopment, which result in variable phenotypic expression. As genetic tests are routinely used for diagnostic confirmation of HSAN III only, other means of differentiating between the disorders is necessary. Diagnosis is based on the clinical features, the degree of both sensory and autonomic dysfunction, and biochemical evaluations, with pathologic examinations serving to further confirm differences. Treatments for all these disorders are supportive

    Phosphatidylserine Increases IKBKAP Levels in Familial Dysautonomia Cells

    Get PDF
    Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease

    Olfactory Stem Cells, a New Cellular Model for Studying Molecular Mechanisms Underlying Familial Dysautonomia

    Get PDF
    International audienceBackground: Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells.Methodology/Principal Findings: We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation.Conclusions/Significance: hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases

    Defects in tRNA Modification Associated with Neurological and Developmental Dysfunctions in Caenorhabditis elegans Elongator Mutants

    Get PDF
    Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5′methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development

    Autonomic Neuropathies

    No full text

    Charcot joints are demonstrated in this boy with HSAN IV or congenital insensitivity to pain with anhidrosis (CIPA)

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Hereditary sensory and autonomic neuropathies: types II, III, and IV"</p><p>http://www.OJRD.com/content/2/1/39</p><p>Orphanet Journal of Rare Diseases 2007;2():39-39.</p><p>Published online 3 Oct 2007</p><p>PMCID:PMC2098750.</p><p></p> The left knee and left ankle are enlarged and distorted. The skin over the medial aspect of the ankle is darkened with a draining would secondary to superimposed osteomyelitis. There are other areas of trauma and ulcers including a site on the left heel
    corecore