689 research outputs found

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory

    Full text link
    We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components Bx(x)B_x({\bf x}), By(x)B_y({\bf x}), Bz(x)B_z({\bf x}), the force-free parameter α(x)\alpha({\bf x}), the electric current density j(x){\bf j}({\bf x}), and are accurate to second-order (of the nonlinear force-free α\alpha-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.Comment: Solar Physics (in press), 26 pages, 11 figure

    Olympic legacy and cultural tourism: Exploring the facets of Athens' Olympic heritage

    Get PDF
    This study examines the effects of the Olympic Games on Athens’ cultural tourism and the city’s potential to leverage the Olympic legacy in synergy with its rich heritage in order to enhance its tourism product during the post-Games period. In doing so, a qualitative and interpretive approach was employed. This includes a literature review on Athens’ 2004 Olympics to identify the sport facilities and regeneration projects, which constitute the Olympic legacy and heritage. Based on that, an empirical analysis was undertaken, by collecting official documents about the 2004 Olympics, and conducting five semi-structured interviews with tourism/administrative officials. The findings indicate that the Olympiad contributed significantly to Athens’ built and human heritage, revealing the dimensions of new venues/facilities, infrastructure, transportation and aesthetic image of the city, and human capital enhancement. Hence, the Games affected to the multifaceted representation and reconstruction of the city’s identity and cultural heritage. However, the potential afforded from the post-Olympic Athens remains unrealised due to lack of strategic planning/management. The study concludes that there is a need to develop cross-leveraging synergies between the Olympic legacy and cultural tourism for the host city. Finally, a strategic planning framework for leveraging post-Games Olympic tourism is suggested in order to maximise the benefits of Olympic legacy and heritage in a host city’s tourism development

    From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    Get PDF
    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: (i) through single point inversions (which encompasses also the analysis of MHD wave modes), (ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and (iii) using tomographic techniques.Comment: Accepted by Solar Physics, April 201

    Multidimensional relativistic MHD simulations of Pulsar Wind Nebulae: dynamics and emission

    Full text link
    Pulsar Wind Nebulae, and the Crab nebula in particular, are the best cosmic laboratories to investigate the dynamics of magnetized relativistic outflows and particle acceleration up to PeV energies. Multidimensional MHD modeling by means of numerical simulations has been very successful at reproducing, to the very finest details, the innermost structure of these synchrotron emitting nebulae, as observed in the X-rays. Therefore, the comparison between the simulated source and observations can be used as a powerful diagnostic tool to probe the physical conditions in pulsar winds, like their composition, magnetization, and degree of anisotropy. However, in spite of the wealth of observations and of the accuracy of current MHD models, the precise mechanisms for magnetic field dissipation and for the acceleration of the non-thermal emitting particles are mysteries still puzzling theorists to date. Here we review the methodologies of the computational approach to the modeling of Pulsar Wind Nebulae, discussing the most relevant results and the recent progresses achieved in this fascinating field of high-energy astrophysics.Comment: 29 pages review, preliminary version. To appear in the book "Modelling Nebulae" edited by D. Torres for Springer, based on the invited contributions to the workshop held in Sant Cugat (Barcelona), June 14-17, 201

    The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state

    Full text link
    The effect of substrate bias and surface gate voltage on the low temperature resistivity of a Si-MOSFET is studied for electron concentrations where the resistivity increases with increasing temperature. This technique offers two degrees of freedom for controlling the electron concentration and the device mobility, thereby providing a means to evaluate the relative importance of electron-electron interactions and disorder in this so-called ``metallic'' regime. For temperatures well below the Fermi temperature, the data obey a scaling law where the disorder parameter (kFlk_{\rm{F}}l), and not the concentration, appears explicitly. This suggests that interactions, although present, do not alter the Fermi-liquid properties of the system fundamentally. Furthermore, this experimental observation is reproduced in results of calculations based on temperature-dependent screening, in the context of Drude-Boltzmann theory.Comment: 5 pages, 6 figure

    Equation of state and magnetic susceptibility of spin polarized isospin asymmetric nuclear matter

    Get PDF
    Properties of spin polarized isospin asymmetric nuclear matter are studied within the framework of the Brueckner--Hartree--Fock formalism. The single-particle potentials of neutrons and protons with spin up and down are determined for several values of the neutron and proton spin polarizations and the asymmetry parameter. It is found an almost linear and symmetric variation of the single-particle potentials as increasing these parameters. An analytic parametrization of the total energy per particle as a function of the asymmetry and spin polarizations is constructed. This parametrization is employed to compute the magnetic susceptibility of nuclear matter for several values of the asymmetry from neutron to symmetric matter. The results show no indication of a ferromagnetic transition at any density for any asymmetry of nuclear matter.Comment: 23 pages, 8 figures, 2 tables (submitted to Phys. Rev. C

    Collisional Velocities and Rates in Resonant Planetesimal Belts

    Full text link
    We consider a belt of small bodies around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber. The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. The collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and Dynamical Astronomy

    Failing boys and moral panics: perspectives on the underachievement debate

    Get PDF
    The paper re-examines the underachievement debate from the perspective of the ‘discourse of derision’ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse – from a reinterpretation of examination scores, to the conflation of the concepts of ‘under’ and ‘low’ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag
    • 

    corecore