978 research outputs found

    Xenopus Drf1, a Regulator of Cdc7, Displays Checkpoint-dependent Accumulation on Chromatin during an S-phase Arrest

    Get PDF
    We have cloned a Xenopus Dbf4-related factor named Drf1 and characterized this protein by using Xenopus egg extracts. Drf1 forms an active complex with the kinase Cdc7. However, most of the Cdc7 in egg extracts is not associated with Drf1, which raises the possibility that some or all of the remaining Cdc7 is bound to another Dbf4-related protein. Immunodepletion of Drf1 does not prevent DNA replication in egg extracts. Consistent with this observation, Cdc45 can still associate with chromatin in Drf1-depleted extracts, albeit at significantly reduced levels. Nonetheless, Drf1 displays highly regulated binding to replicating chromatin. Treatment of egg extracts with aphidicolin results in a substantial accumulation of Drf1 on chromatin. This accumulation is blocked by addition of caffeine and by immunodepletion of either ATR or Claspin. These observations suggest that the increased binding of Drf1 to aphidicolin-treated chromatin is an active process that is mediated by a caffeine-sensitive checkpoint pathway containing ATR and Claspin. Abrogation of this pathway also leads to a large increase in the binding of Cdc45 to chromatin. This increase is substantially reduced in the absence of Drf1, which suggests that regulation of Drf1 might be involved in the suppression of Cdc45 loading during replication arrest. We also provide evidence that elimination of this checkpoint causes resumed initiation of DNA replication in both Xenopus tissue culture cells and egg extracts. Taken together, these observations argue that Drf1 is regulated by an intra-S-phase checkpoint mechanism that down-regulates the loading of Cdc45 onto chromatin containing DNA replication blocks

    Roles of replication fork-interacting and Chk1-activating domains from claspin in a DNA replication checkpoint response

    Get PDF
    Claspin is essential for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. Claspin associates with replication forks upon origin unwinding. We show that Claspin contains a replication fork-interacting domain (RFID, residues 265–605) that associates with Cdc45, DNA polymerase ε, replication protein A, and two replication factor C complexes on chromatin. The RFID contains two basic patches (BP1 and BP2) at amino acids 265–331 and 470–600, respectively. Deletion of either BP1 or BP2 compromises optimal binding of Claspin to chromatin. Absence of BP1 has no effect on the ability of Claspin to mediate activation of Chk1. By contrast, removal of BP2 causes a large reduction in the Chk1-activating potency of Claspin. We also find that Claspin contains a small Chk1-activating domain (residues 776–905) that does not bind stably to chromatin, but it is fully effective at high concentrations for mediating activation of Chk1. These results indicate that stable retention of Claspin on chromatin is not necessary for activation of Chk1. Instead, our findings suggest that only transient interaction of Claspin with replication forks potentiates its Chk1-activating function. Another implication of this work is that stable binding of Claspin to chromatin may play a role in other functions besides the activation of Chk1

    Adjuvant Immunotherapy Is Dependent on Inducible Nitric Oxide Synthase

    Get PDF
    Rodents immunized with complete Freund's adjuvant (CFA) are resistant to subsequent attempts to induce autoimmune disease, while animals immunized with incomplete Freund's adjuvant (IFA) remain susceptible. Mycobacterial extracts can stimulate inducible nitric oxide synthase (NOS2) gene transcription. Robust expression of NOS2 has been linked to suppression of T cell proliferation and alterations in immune responses. Our studies investigated the hypothesis that the immunoprotective effect of CFA before immunization requires functional NOS2. NOS2 gene expression is chronically elevated in lymph nodes and spleens of CFA-immunized mice. Maximal expression of NOS2 after CFA immunization requires the presence of functional type I tumor necrosis factor α receptor (TNFR1) and interferon γ. Groups of nontreated and CFA-preimmunized male C57BL/6J or C57BL/6NOS2−/− mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35–55 in CFA to induce experimental allergic encephalomyelitis (EAE). Wild-type C57BL/6J mice were protected from the development of symptoms of EAE, while the NOS2−/− mice failed to be protected. NOS2-dependent effects of CFA included an augmentation of the MOG-specific IgG1 response, a decrease in interleukin 6 production by MOG-reactive lymphocytes, and a marked decrease in mononuclear cell infiltrates in the central nervous system. These studies support the hypothesis that CFA immunization modulates immune responses through a nitric oxide–dependent mechanism

    Functional network changes and cognitive control in schizophrenia

    Get PDF
    Cognitive control is a cognitive and neural mechanism that contributes to managing the complex demands of day-to-day life. Studies have suggested that functional impairments in cognitive control associated brain circuitry contribute to a broad range of higher cognitive deficits in schizophrenia. To examine this issue, we assessed functional connectivity networks in healthy adults and individuals with schizophrenia performing tasks from two distinct cognitive domains that varied in demands for cognitive control, the RiSE episodic memory task and DPX goal maintenance task. We characterized general and cognitive control-specific effects of schizophrenia on functional connectivity within an expanded frontal parietal network (FPN) and quantified network topology properties using graph analysis. Using the network based statistic (NBS), we observed greater network functional connectivity in cognitive control demanding conditions during both tasks in both groups in the FPN, and demonstrated cognitive control FPN specificity against a task independent auditory network. NBS analyses also revealed widespread connectivity deficits in schizophrenia patients across all tasks. Furthermore, quantitative changes in network topology associated with diagnostic status and task demand were observed. The present findings, in an analysis that was limited to correct trials only, ensuring that subjects are on task, provide critical insights into network connections crucial for cognitive control and the manner in which brain networks reorganize to support such control. Impairments in this mechanism are present in schizophrenia and these results highlight how cognitive control deficits contribute to the pathophysiology of this illness

    Childhood abuse and reduced cortical thickness in brain regions involved in emotional processing

    Get PDF
    Alterations in gray matter development represent a potential pathway through which childhood abuse is associated with psychopathology. Several prior studies find reduced volume and thickness of prefrontal (PFC) and temporal cortex regions in abused compared to non-abused adolescents, although most prior research is based on adults and volume-based measures. The current study tests the hypothesis that child abuse, independent of parental education, predicts reduced cortical thickness in prefrontal and temporal cortices as well as reduced gray mater volume (GMV) in subcortical regions during adolescence

    Identification of three novel Toxoplasma gondii rhoptry proteins

    Get PDF
    The rhoptries are key secretory organelles from apicomplexan parasites that contain proteins involved in invasion and modulation of the host cell. Some rhoptry proteins are restricted to the posterior bulb (ROPs) and others to the anterior neck (RONs). As many rhoptry proteins have been shown to be key players in Toxoplasma invasion and virulence, it is important to identify, understand and characterise the biological function of the components of the rhoptries. In this report, we identified putative novel rhoptry genes by identifying Toxoplasma genes with similar cyclical expression profiles as known rhoptry protein encoding genes. Using this approach we identified two new rhoptry bulb (ROP47 and ROP48) and one new rhoptry neck protein (RON12). ROP47 is secreted and traffics to the host cell nucleus, RON12 was not detected at the moving junction during invasion. Deletion of ROP47 or ROP48 in a type II strain did not show major influence in in vitro growth or virulence in mice.United States. National Institutes of Health (R01-AI080621

    Infant behavioral reactivity predicts change in amygdala volume 12 years later

    Get PDF
    The current study examined the link between temperamental reactivity in infancy and amygdala development in middle childhood. A sample (n = 291) of four-month-old infants was assessed for infant temperament, and two groups were identified: those exhibiting negative reactivity (n = 116) and those exhibiting positive reactivity (n = 106). At 10 and 12 years of age structural imaging was completed on a subset of these participants (n = 75). Results indicate that, between 10 and 12 years of age, left amygdala volume increased more slowly in those with negative compared to positive reactive temperament. These results provide novel evidence linking early temperament to distinct patterns of brain development over middle childhood

    Maltreatment Exposure, Brain Structure and Fear Conditioning in Children and Adolescents

    Get PDF
    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6–18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS−) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS−, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS− during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat–safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children

    Drf1-dependent Kinase Interacts with Claspin through a Conserved Protein Motif

    Get PDF
    The Dbf4/Drf1-dependent kinase (DDK) is required for the initiation of DNA replication in eukaryotes. Another protein, Claspin, mediates the activation of a cellular checkpoint response to stalled replication forks and is also a regulator of replication. In this study, we found that DDK phosphorylates Claspin in vitro and forms a nuclear complex containing Cdc7, Drf1, and Claspin in Xenopus egg extracts. In addition, purified Claspin and DDK are capable of a direct in vitro interaction. We identified a conserved binding site on Claspin required for its interaction with DDK. This site corresponds to the first of two sequence repeats in the Chk1-binding domain of Claspin. Furthermore, we have established that two amino acids in this motif, Asp^(861) and Gln^(866), are essential for the interaction between Claspin and DDK. We found that mutant forms of Claspin incapable of interacting with DDK are still able to associate with and activate Chk1 in response to DNA replication blockages. However, Claspin-depleted egg extracts that have been reconstituted with these mutants of Claspin undergo DNA replication more slowly. These findings suggest that the interaction of DDK with Claspin mediates a checkpoint-independent function of Claspin related to DNA replication
    • …
    corecore