201 research outputs found

    6 FEBRUARY 2023 KAHRAMANMARAŞ – TÜRKİYE EARTHQUAKES: A GENERAL OVERVIEW

    Get PDF
    On 6 February 2023, two major earthquakes occurred in the East Anatolian Fault Zone (EAFZ) of Türkiye. The EAFZ forms the east border of the Anatolian Plate. The magnitude 7.7 and 7.5 Kahramanmaraş – Türkiye Earthquakes that struck southern Türkiye and resulted in common destruction in 11 provinces in the region. Total 6 main fault segments of the EAFZ ruptured during the earthquake sequence on 6 February 2023, and approximately 400 km surface rupture occurred. The life losses are reported as over 50000, and approximately 300,000 buildings were collapsed or severely damaged. In addition to damages on the buildings and the infrastructures, liquefactions, landslides, rockfalls, and rock avalanches were also observed during the earthquake sequence. The purpose of this study is to present a general overview on the 6 February 2023 Earthquake sequence

    Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability

    Get PDF
    International audienceAs a result of industrialization, throughout the world, the cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul. Today, the population of Istanbul is over 10 millions. Depending on this rapid urbanization, new suitable areas for settlements and engineering structures are necessary. For this reason, the Cekmece area, west of the Istanbul metropolitan area, is selected as the study area, because the landslides are frequent in this area. The purpose of the present study is to produce landslide susceptibility map of the selected area by conditional probability approach. For this purpose, a landslide database was constructed by both air ? photography and field studies. 19.2% of the selected study area is covered by landslides. Mainly, the landslides described in the area are generally located in the lithologies including the permeable sandstone layers and impermeable layers such as claystone, siltstone and mudstone layers. When considering this finding, it is possible to say that one of the main conditioning factors of the landslides in the study area is lithology. In addition to lithology, many landslide conditioning factors are considered during the landslide susceptibility analyses. As a result of the analyses, the class of 5?10° of slope, the class of 180?225 of aspect, the class of 25?50 of altitude, Danisment formation of the lithological units, the slope units of geomorphology, the class of 800?1000 m of distance from faults (DFF), the class of 75?100 m of distance from drainage (DFD) pattern, the class of 0?10m of distance from roads (DFR) and the class of low or impermeable unit of relative permeability map have the higher probability values than the other classes. When compared with the produced landslide susceptibility map, most of the landslides identified in the study area are found to be located in the most (54%) and moderate (40%) susceptible zones. This assessment is also supported by the performance analysis applied at end of the study. As a consequence, the landslide susceptibility map produced herein has a valuable tool for the planning purposes

    MULTI-HAZARD SUSCEPTIBILITY ASSESSMENT WITH HYBRID MACHINE LEARNING METHODS FOR TUT REGION (ADIYAMAN, TURKIYE)

    Get PDF
    Recent Kahramanmaras earthquakes (Mw 7.7 and 7.6) occurred on 6 February 2023 have shown the importance of site selection for settlements and infrastructure considering the fact that multiple hazards may affect the same area and even interact with each other. The Kahramanmaras earthquakes triggered several landslides, which also increased the level of destruction. Here, we implemented a multi-hazard susceptibility assessment approach for Tut town of Golbasi, Adiyaman and its surroundings. Over 600 landslides were triggered in the area by the earthquakes. In addition, the region is prone to flooding and a devastating one occurred on March 15, 2023 after heavy rains. In this study, we employed co-seismic landslide inventory for landslide susceptibility assessment with random forest. Regarding flood susceptibility, a modified analytical hierarchical process was utilized based on expert opinion on factor importance. The earthquake hazard probability distribution was obtained from a distance-based interpolation of Arias intensity values. We utilized Mamdani Fuzzy Inference System for producing a multi-hazard susceptibility map from univariate maps of earthquake, landslide and flood. The result shows that the selected methods for each type of susceptibility map was suitable and the output of the study can be utilized for the site selection in Tut region, which is a crucial subject due to the need of new construction sites after the earthquakes

    CONSIDERATIONS ON THE USE OF SENTINEL-1 DATA IN FLOOD MAPPING IN URBAN AREAS: ANKARA (TURKEY) 2018 FLOODS

    Get PDF
    Flood events frequently occur due to -most probably- climate change on our planet in the recent years. Rapid urbanization also causes imperfections in city planning, such as insufficient considerations of the environmental factors and the lack of proper infrastructure development. Mapping of inundation level following a flood event is thus important in evaluation of flood models and flood hazard and risk analyzes. This task can be harder in urban areas, where the effect of the disaster can be more severe and even cause loss of lives.With the increased temporal and spatial availability of SAR (Synthetic Aperture Radar) data, several flood detection applications appear in the literature although their use in urban areas so far relatively limited. In this study, one flood event occurred in Ankara, Turkey, in May 2018 has been mapped using Sentinel-1 SAR data. The preprocessing of Sentinel-1 data and the mapping procedure have been described in detail and the results have been evaluated and discussed accordingly. The results of this study show that SAR sensors provide fast and accurate data during the flooding using appropriate methods, and due to the nature of the flood events, i.e. heavy cloud coverage, it is currently irreplaceable by optical remote sensing techniques.</p

    ROCK MASS DISCONTINUITY DETERMINATION WITH TRANSFER LEARNING

    Get PDF
    Rock mass discontinuity and orientation are among the important rock mass features. They are conventionally determined with scan-line surveys by engineering geologists in field, which can be difficult or impossible depending on site accessibility. Photogrammetry and computer vision techniques can aid to automatically perform these measurements, although variations in size, shape and appearance of rock masses make the task challenging. Here we propose an automated approach for the detection of rock mass discontinuities using deep learning and photogrammetric image processing methods. Two deep convolutional neural network (DCNNs) were implemented for this purpose and applied to basalts in Kizilcahamam Guvem Geosite near Ankara, Türkiye. Red-green-blue (RGB) band images of the site were taken from an off-the-shelf camera with 1.7 mm resolution and a 3D digital surface model and orthophotos were produced by using photogrammetric software. The discontinuities were delineated manually on the orthophoto and converted to masks. The first DCNN model was based on the open-source crack dataset consisting of a total of 11,298 road and pavement images, which were used to train the Resnet-18 model (Model-1). The second model (Model-2) was based on fine-tuning of Model-1 using the study data from Kizilcahamam. After fine-tuning, Model-2 was able to achieve high performance with a Jaccard Score of 88% on the test data. The results show high potential of the methodology for transfer learning with fine-tuning of a small amount of data that can be applied to other sites and rock mass types as well

    FREQUENCY RATIO ASSESSMENT FOR LANDSLIDES TRIGGERED BY 6 FEBRUARY 2023 KAHRAMANMARAS TURKIYE EARTHQUAKES BETWEEN GOLBASI AND ERKENEK

    Get PDF
    Landslides triggered by earthquakes are significant geological hazards that can have devastating consequences, posing risks to human lives, infrastructure, and the environment. These seismic events may cause the instability of slopes and result in the displacement of soil and rock materials, leading to landslides. It is crucial to understand the characteristics and mechanisms of earthquake-triggered landslides in order to effectively manage and mitigate their associated risks. The number of landslides triggered by the 2023 Kahramanmaraş earthquakes (with magnitudes of 7.7 and 7.6) was over three thousand and their destructive effects were also devastating as secondary hazards. This study aims to examine the characteristics of landslides using the frequency ratio (FR) model. A landslide susceptibility map (LSM) was also produced using the output. For this purpose, in this study, we derived landslides triggered by the earthquakes in a part of the earthquake-affected region, between Golbasi town of Adiyaman and Erkenek village of Malatya covering an area with a size of 625 km2. The study utilized a landslide inventory that was manually delineated by visual interpretation based on pre-event and post-event. These associations can serve as a foundation for the application of various data-driven machine learning techniques. The findings of this study will contribute to the development of accurate LSMs, providing crucial insights into the behavior of earthquake-triggered landslides

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Landslide susceptibility mapping at VAZ watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms

    Get PDF
    Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning

    Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran

    Get PDF
    The main goal of this study is to produce landslide susceptibility map using GIS-based support vector machine (SVM) at Kalaleh Township area of the Golestan province, Iran. In this paper, six different types of kernel classifiers such as linear, polynomial degree of 2, polynomial degree of 3, polynomial degree of 4, radial basis function (RBF) and sigmoid were used for landslide susceptibility mapping. At the first stage of the study, landslide locations were identified by aerial photographs and field surveys, and a total of 82 landslide locations were extracted from various sources. Of this, 75% of the landslides (61 landslide locations) are used as training dataset and the rest was used as (21 landslide locations) the validation dataset. Fourteen input data layers were employed as landslide conditioning factors in the landslide susceptibility modelling. These factors are slope degree, slope aspect, altitude, plan curvature, profile curvature, tangential curvature, surface area ratio (SAR), lithology, land use, distance from faults, distance from rivers, distance from roads, topographic wetness index (TWI) and stream power index (SPI). Using these conditioning factors, landslide susceptibility indices were calculated using support vector machine by employing six types of kernel function classifiers. Subsequently, the results were plotted in ArcGIS and six landslide susceptibility maps were produced. Then, using the success rate and the prediction rate methods, the validation process was performed by comparing the existing landslide data with the six landslide susceptibility maps. The validation results showed that success rates for six types of kernel models varied from 79% to 87%. Similarly, results of prediction rates showed that RBF (85%) and polynomial degree of 3 (83%) models performed slightly better than other types of kernel (polynomial degree of 2 = 78%, sigmoid = 78%, polynomial degree of 4 = 78%, and linear = 77%) models. Based on our results, the differences in the rates (success and prediction) of the six models are not really significant. So, the produced susceptibility maps will be useful for general land-use planning
    corecore