708 research outputs found
Suitability of foramen magnum measurements in sex determination and their clinical significance
Background: The foramen magnum provides a transition between fossa cranii posterior and canalis vertebralis. Medulla oblongata, arteria vertebralis and nervus accessorius spinal part pass through the foramen magnum. In this study, we aimed to make the morphometric measurements of the foramen magnum on computed tomography (CT) and to determine the feasibility of sex determination based on these measurements. Besides sex determination, from a clinical aspect, it is important to know the measurements of the foramen magnum in the normal population in terms of diseases characterised by displacement of the posterior fossa structures through foramen magnum to upper cervical spinal canal such as Chiari malformations and syringomyelia.
Materials and methods: All the data for our study was obtained retrospectively from 100 patients (50 males, 50 females) who had a CT scan of the head and neck region in Adnan Menderes University Hospital, Department of Radiology. To examine the foramen magnum in each and every occipital bone, we measured the foramen magnum’s anteroposterior diameter, transverse diameter, the area of the foramen magnum and its circumference.
Results: We found that men have a higher average value than women in our study. According to Student’s t-test results; in all measured parameters, there is significant difference between the genders (p < 0.05). When multivariate discriminant function test is performed for all four measurements, the discrimination rate is 64% for all women, 70% for all men and 67% for both genders.
Conclusions: As a result of our study, the metric data we obtained will be useful in cases where the skeletons’ sex could not be determined by any other methods. We believe that, our study may be useful for other studies in determining of sex from foramen magnum. Our measurements could give some information of the normal ranges of the foramen magnum in normal population, so that this can contribute to the diagnosis process of some diseases by imaging. (Folia Morphol 2018; 77, 1: 99–104) Â
The effect of erythropoietin on healing of obstructive vs nonobstructive left colonic anastomosis: an experimental study
<p>Abstract</p> <p>Background</p> <p>Anastomotic leakage is an important problem following primary resection in the left colon and is even more prominent when obstruction is present. We aimed to evaluate the possible effects of erythropoietin on the healing of anastomosis under both obstructive and non-obstructive states.</p> <p>Methods</p> <p>Forty male Wistar albino rats were divided into four groups. In group I, two cm left colonic resection and primary anastomosis were done. In group II, left colon were completely ligated and 24 hours later animals were re-operated for segmental resection. The same procedures were performed for rats in group III and IV in respect to group I and II and, 500 IU/kg a day erythropoietin were given in the latter two groups for seven days. For the quantative description of anastomotic healing mechanical, biochemical and histopathological parameters were employed on the seventh day and the animals were sacrificied.</p> <p>Results</p> <p>Although erythropoietin had positive effects on bursting pressure in group IV when compared to group II, it has no effect in group III. Despite the increased tissue hydroxyproline levels in group IV, erythropoietin failed to show any effects in group III.</p> <p>Erythropoietin had positive effects on neovascularization, fibroblast proliferiation and storage of collagen in group IV.</p> <p>Conclusion</p> <p>We failed to find any direct and evident effects of erythropoietin on healing of left colonic anastomosis. On the other hand, erythropoietin might prevent negative effects of obstruction on healing.</p
Recommended from our members
Seismicity and Improved Velocity Structure in Kuwait
The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and relative arrival times. We obtained {approx}1500 absolute P and S arrival times and {approx}3200 P and S wave arrival time differences. Event locations do not change greatly when 3D velocity structure is included. Three-dimensional velocity structure, where resolvable, does not differ greatly from our optimized 1D model, indicating that the improved 1D model is adequate for routine event location. Finally, we calculated moment magnitudes, MW, for nearly 155 events using the coda magnitude technique of Mayeda et al., (2003). The fact that most of the relocated events occur below the known sedimentary structures extending to 7 km suggests that they are tectonic in origin. Shallow events within the sedimentary crust in the (southern) Minagish region may be related to oil field activities, although the current study cannot unambiguously determine the source of current seismicity in Kuwait. The improved velocity model reduces the scatter of travel time residuals relative to the locations reported in the KNSN bulletin and may be used for ground motion prediction and hazard estimate studies in Kuwait
Recommended from our members
The Scaling of Seismic Energy With Moment: Simple Models Compared With Observations
Does organizational formalization facilitate voice and helping organizational citizenship behaviors? It depends on (national) uncertainty norms
Prosocial work behaviors in a globalized environment do not operate in a cultural vacuum. We assess to what extent voice and helping organizational citizenship behaviors (OCBs) vary across cultures, depending on employees’ perceived level of organizational formalization and national uncertainty. We predict that in contexts of uncertainty, cognitive resources are engaged in coping with this uncertainty. Organizational formalization can provide structure that frees up cognitive resources to engage in OCB. In contrast, in contexts of low uncertainty, organizational formalization is not necessary for providing structure and may increase constraints on discretionary behavior. A three-level hierarchical linear modeling analysis of data from 7,537 employees in 267 organizations across 17 countries provides broad support for our hypothesis: perceived organizational formalization is weakly related to OCB, but where uncertainty is high; formalization facilitates voice significantly, helping OCB to a lesser extent. Our findings contribute to clarifying the dynamics between perceptions of norms at organizational and national levels for understanding when employees may engage in helping and voice behaviors. The key implication is that managers can foster OCB through organizational formalization interventions in uncertain environments that are cognitively demanding
High-conductivity silicon based spectrally selective plasmonic surfaces for sensing in the infrared region
Plasmonic perfect absorbers have found a wide range of applications in imaging, sensing, and light harvesting and emitting devices. Traditionally, metals are used to implement plasmonic structures. For sensing applications, it is desirable to integrate nanophotonic active surfaces with biasing and amplification circuitry to achieve monolithic low cost solutions. Commonly used plasmonic metals such as Au and Ag are not compatible with standard silicon complementary metal-oxide-semiconductor (CMOS) technology. Here we demonstrate plasmonic perfect absorbers based on high conductivity silicon. Standard optical lithography and reactive ion etching techniques were used for the patterning of the samples. We present computational and experimental results of surface plasmon resonances excited on a silicon surface at normal and oblique incidences. We experimentally demonstrate our absorbers as ultra-low cost, CMOS-compatible and efficient refractive index sensing surfaces. The experimental results reveal that the structure exhibits a sensitivity of around 11 000 nm/RIU and a figure of merit of up to 2.5. We also show that the sensing performance of the structure can be improved by increasing doping density. � 2016 IOP Publishing Ltd
Recommended from our members
Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion
We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes
- …