85 research outputs found

    Nanoparticulate TiO2-promoted PtRu/C catalyst for methanol oxidation: TiO2 nanoparticles promoted PtRu/C catalyst for MOR

    Get PDF
    To improve the electrocatalytic properties of PtRu/C in methanol electrooxidation, nanoparticulate TiO2-promoted PtRu/C catalysts were prepared by directly mixing TiO2 nanoparticles with PtRu/C. Using cyclic voltammetry, it was found that the addition of 10 wt% TiO2 nanoparticles can effectively improve the electrocatalytic activity and stability of the catalyst during methanol electro-oxidation. The value of the apparent activation energy (Ea) for TiO2-PtRu/C was lower than that for pure PtRu/C at a potential range from 0.45 to 0.60 V. A synergistic effect between PtRu and TiO2 nanoparticles is likely to facilitate the removal of CO-like intermediates from the surface of PtRu catalyst and reduce the poisoning of the PtRu catalysts during methanol electrooxidation. Therefore, we conclude that the direct introduction of TiO2 nanoparticles into PtRu/ C catalysts offers an improved facile method to enhance the electrocatalytic performance of PtRu/C catalyst in methanol electrooxidation.Web of Scienc

    Resveratrol: A Multifunctional Compound Improving Endothelial Function: Editorial to: “Resveratrol Supplementation Gender Independently Improves Endothelial Reactivity and Suppresses Superoxide Production in Healthy Rats” by S. Soylemez et al.

    Get PDF
    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively

    Insertion of Horizontally Transferred Genes within Conserved Syntenic Regions of Yeast Genomes

    Get PDF
    Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks

    From the outside in: narratives of creative arts practitioners working in the criminal justice system

    Get PDF
    This is an accepted manuscript of an article published by Wiley-Blackwell in The Howard Journal of Crime and Justice on 31/12/2019, available online: https://doi.org/10.1111/hojo.12318 The accepted version of the publication may differ from the final published version.The penal voluntary sector is highly variegated in its roles, practices and functions, though research to date has largely excluded the experiences of front-line practitioners. We argue that engaging with the narratives of practitioners can provide fuller appreciation of the potential of the sector’s work. Though life story and narrative have been recognised as important in offender desistance (Maruna, 2001), the narrative identities of creative arts practitioners, who are important ‘change agents’ (Albertson, 2015), are typically absent. This is despite evidence to suggest that a practitioner’s life history can be a significant and positive influence in the rehabilitation of offenders (Harris, 2017). Using narratological analysis (Bal, 2009), this study examined the narratives of 19 creative practitioners in prisons in England and Wales. Of particular interest were the formative experiences of arts practitioners in their journey to prison work. The findings suggest that arts practitioners identify with an ‘outsider’ status and may be motivated by an ethic of mutual aid. In the current climate of third sector involvement in the delivery of criminal justice interventions, such a capacity may be both a strength and weakness for arts organisations working in this field

    Cytotoxic t-cells mediate exercise-induced reductions in tumor growth

    No full text
    Exercise has a wide range of systemic effects. In animal models, repeated exertion reduces malignant tumor progression, and clinically, exercise can improve outcome for cancer patients. The etiology of the effects of exercise on tumor progression are unclear, as are the cellular actors involved. We show here that in mice, exercise-induced reduction in tumor growth is dependent on CD8+ T cells, and that metabolites produced in skeletal muscle and excreted into plasma at high levels during exertion in both mice and humans enhance the effector profile of CD8 + T-cells. We found that activated murine CD8+ T cells alter their central carbon metabolism in response to exertion in vivo, and that immune cells from trained mice are more potent antitumor effector cells when transferred into tumor-bearing untrained animals. These data demonstrate that CD8+ T cells are metabolically altered by exercise in a manner that acts to improve their antitumoral efficacy
    corecore