27 research outputs found

    Individualisation des paramètres musculaires pour la modélisation musculo-squelettique de la main : application à la compréhension de l'arthrose

    Get PDF
    Hand osteoarthritis is a pathology which results in pain and functional impotency which are problematic for everyday life. Unfortunately, because of the complexity of hand biomechanics and the lack of quantification of finger joint loading, the prevention and the rehabilitation of this pathology remain problematic. The objective of this doctoral work was to develop the musculoskeletal modelling of the hand to improve the understanding of hand osteoarthritis from a biomechanical point of view. A complete model of the hand, including the five fingers and the wrist, as well as an experimental protocol for measuring hand kinematics and grip forces were first developed to estimate all the muscle forces and joint forces during prehension tasks. These methodological tools have then been used to clarify the risk factors of hand osteoarthritis associated to prehension tasks and to specific joints. To investigate more precisely the risk factors associated to individuals, a method has been developed to individualise muscle parameters of the hand musculoskeletal model in order to provide a better representation of the real performances of each subject. This method has then been applied to the analysis of two osteoarthritis patients and allowed a complete characterization of the specific biomechanical adaptations and consequences associated to their specific affections. The hand musculoskeletal model and the experimental protocols developed during this doctoral work provided quantified data which represents a concrete interest to improve prevention but also to elaborate and evaluate rehabilitation programs.L’arthrose de la main est une pathologie qui engendre des douleurs et des impotences fonctionnelles fortement handicapantes pour la vie quotidienne. Malheureusement, du fait de la complexité biomécanique de la main et du manque de quantification des forces subies par les articulations des doigts, la prévention et la réhabilitation de cette pathologie demeurent problématiques. L’objectif de ce travail doctoral a été de développer une modélisation musculo-squelettique de la main pour améliorer la compréhension de l’arthrose du point de vue biomécanique. Un modèle complet de la main, incluant les cinq doigts et le poignet, ainsi qu’un protocole expérimental de mesure de la cinématique et des forces externes appliquées à la main ont d’abord été développés pour estimer l’ensemble des forces musculaires et des forces articulaires durant la préhension. Ces outils méthodologiques ont permis de clarifier les risques d’arthrose associés aux types de préhension ainsi que ceux spécifiques aux articulations. Afin d’analyser plus précisément les facteurs de risques associés à chaque individu, une méthode d’individualisation des paramètres musculaires a été développée afin de mettre le modèle de la main à l’échelle des capacités réelles des individus. Cette méthode a été employée pour l’analyse de deux patientes et a permis de caractériser les adaptations et les conséquences biomécaniques associées à leurs affections spécifiques. Le modèle de la main et les protocoles expérimentaux développés ont ainsi fournit des données quantifiées qui représentent un intérêt concret pour l’amélioration de la prévention ainsi que pour l’élaboration et l’évaluation de programmes de réhabilitation

    Influence of Force-Length Relationship and Task-Specific Constraints on Finger Force-Generating Capacities

    Full text link
    Grip strength loss in extended and flexed wrist postures has been explained by reduced force-generating capacities of extrinsic finger flexor resulting from non-optimal length, owing to the force-length relationship. Recent works suggested that other muscles, especially wrist extensors, participate in this grip strength loss. The objective of this study was to clarify the role of the force-length relationship in finger force production. 18 participants performed maximal isometric finger force production during pinch grip (Pinch) and four-finger pressing (Press) tasks in four different wrist postures (extended, flexed, neutral, spontaneous). The maximum finger force (MFF), finger and wrist joint angles, as well as activation of four muscles were determined using dynamometry, motion capture, and electromyography. The force and length of the four muscles were estimated from joint angles and muscle activation using a musculoskeletal model. MFF decreased for flexed wrist during Pinch but remained stable across wrist postures during Press. The results suggested that the loss of pinch grip force in deviated wrist posture is partially related to force-length relationship of finger extensors. In opposition, MFF during Press was not influenced by the modulation of muscle capacities but was probably first limited by mechanical and neural factors related to finger interdependenceComment: Annals of Biomedical Engineering, 202

    Finger flexion to extension ratio in healthy climbers: a proposal for evaluation and rebalance

    Get PDF
    IntroductionFinger strength is a key factor in climbing performance and is highly dependent on the capacity of the finger flexor muscles. The majority of finger-specific training therefore focuses on improving such capabilities by performing finger flexion contraction during hanging exercises on small holds. However, greater strength in the finger flexors causes an imbalance with the extensor muscle capacities. Such an unfavourable imbalance may be detrimental to finger strength and could possibly lead to an increase in the risk of finger injury. The aim of this study was to develop an easily implementable method to assess the flexor-to-extensor imbalance and evaluate the effects of different training on it.MethodsSeventy-eight experienced climbers were tested to assess their maximum finger flexion strength (MFS), maximum finger extension strength (MES) and MFS/MES ratio. Fifty-two of them were randomly assigned to one of three training regimens: intermittent static flexion at 80% MFS (TFlex; n = 11), intermittent static extension at 80% MES (TExt; n = 10), intermittent repetition of alternating flexion and extension (TPaired; n = 11) or no specific training (CTRL; n = 20). They trained twice a week for four weeks on a hangboard. Before and after training, force data were recorded on a force-sensing hangboard and MFS, MES and the MFS/MES ratio were compared using ANCOVA.ResultsThe mean value of the MFS/MES ratio was 6.27 (confidence interval: 5.94–6.61) and the extreme ratio was defined above 8.75. Concerning the training intervention, no difference was observed in the CTRL group between pre- and post-tests. MFS improved significantly in the TFlex (+8.4 ± 4.4%) and TPaired (+11.9 ± 10.5%) groups, whereas MES increased significantly in the TExt group (+41.4 ± 31.3%). The MFS/MES ratio remained statistically stable among all groups (+0.9 ± 17.5% in TFlex, −1.9 ± 16.1% in TPaired), although the TExt group showed a decreasing trend (p = 0.1; −27.8 ± 17.6%).DiscussionThese results showed that only the extensor-based training had an effect on finger extension strength and the potential to rebalance the MFS/MES ratio

    Comparison of three local frame definitions for the kinematic analysis of the fingers and the wrist

    Get PDF
    International audienceBecause the hand is a complex poly-articular limb, numerous methods have been proposed to investigate its kinematics therefore complicating the comparison between studies and the methodological choices. With the objective of overcoming such issues, the present study compared the effect of three local frame definitions on local axis orientations and joint angles of the fingers and the wrist. Three local frames were implemented for each segment. The “Reference” frames were aligned with global axes during a static neutral posture. The “Landmark” frames were computed using palpated bony landmarks. The “Functional” frames included a flexion–extension axis estimated during functional movements. These definitions were compared with regard to the deviations between obtained local segment axes and the evolution of joint (Cardan) angles during two test motions. Each definition resulted in specific local frame orientations with deviations of 15° in average for a given local axis. Interestingly, these deviations produced only slight differences (below 7°) regarding flexion–extension Cardan angles indicating that there is no preferred method when only interested in finger flexion–extension movements. In this case, the Reference method was the easiest to implement, but did not provide physiological results for the thumb. Using the Functional frames reduced the kinematic cross-talk on the secondary and tertiary Cardan angles by up to 20° indicating that the Functional definition is useful when investigating complex three-dimensional movements. Globally, the Landmark definition provides valuable results and, contrary to the other definitions, is applicable for finger deformities or compromised joint rotations

    Anatomical parameters for musculoskeletal modeling of the hand and wrist

    Get PDF
    International audienceA musculoskeletal model of the hand and wrist can provide valuable biomechanical and neurophysiological insights, relevant for clinicians and ergonomists. Currently, no consistent data-set exists comprising the full anatomy of these upper extremity parts. The aim of this study was to collect a complete anatomical data-set of the hand and wrist, including the intrinsic and extrinsic muscles. One right lower arm, taken from a fresh frozen female specimen, was studied. Geometrical data for muscles and joints were digitized using a 3D optical tracking system. For each muscle, optimal fiber length and physiological cross-sectional area were assessed based on muscle belly mass, fiber length, and sarcomere length. A brief description of model, in which these data were imported as input, is also provided. Anatomical data including muscle morphology and joint axes (48 muscles and 24 joints) and mechanical representations of the hand are presented. After incorporating anatomical data in the presented model, a good consistency was found between outcomes of the model and the previous experimental studies

    Individualization of muscle parameters for musculoskeletal modelling of the hand : application to the understanding of osteoarthritis

    No full text
    L'arthrose de la main est une pathologie qui engendre des douleurs et des impotences fonctionnelles fortement handicapantes pour la vie quotidienne. Malheureusement, du fait de la complexité biomécanique de la main et du manque de quantification des forces subies par les articulations des doigts, la prévention et la réhabilitation de cette pathologie demeurent problématiques. L'objectif de ce travail doctoral a été de développer une modélisation musculo-squelettique de la main pour améliorer la compréhension de l'arthrose du point de vue biomécanique. Un modèle complet de la main, incluant les cinq doigts et le poignet, ainsi qu'un protocole expérimental de mesure de la cinématique et des forces externes appliquées à la main ont d'abord été développés pour estimer l'ensemble des forces musculaires et des forces articulaires durant la préhension. Ces outils méthodologiques ont permis de clarifier les risques d'arthrose associés aux types de préhension ainsi que ceux spécifiques aux articulations. Afin d'analyser plus précisément les facteurs de risques associés à chaque individu, une méthode d'individualisation des paramètres musculaires a été développée afin de mettre le modèle de la main à l'échelle des capacités réelles des individus. Cette méthode a été employée pour l'analyse de deux patientes et a permis de caractériser les adaptations et les conséquences biomécaniques associées à leurs affections spécifiques. Le modèle de la main et les protocoles expérimentaux développés ont ainsi fournit des données quantifiées qui représentent un intérêt concret pour l'amélioration de la prévention ainsi que pour l'élaboration et l'évaluation de programmes de réhabilitation.Hand osteoarthritis is a pathology which results in pain and functional impotencies which are problematic for everyday life. Unfortunately, because of the complexity of hand biomechanics and the lack of quantification of finger joint loadings, the prevention and the rehabilitation of this pathology remain problematic. The objective of this doctoral work was to develop the musculoskeletal modelling of the hand to improve the understanding of hand osteoarthritis from a biomechanical point of view. A complete model of the hand, including the five fingers and the wrist, as well as an experimental protocol for measuring hand kinematics and grip forces were first developed to estimate all the muscle forces and joint forces during prehension tasks. These methodological tools have then been used to clarify the risk factors of hand osteoarthritis associated to prehension tasks and to specific joints. To investigate more precisely the risk factors associated to individuals, a method has been developed to individualise muscle parameters of the hand musculoskeletal model in order to provide a better representation of the real performances of each subject. This method has then been applied to the analysis of two osteoarthritis patients and allowed a complete characterization of the specific biomechanical adaptations and consequences associated to their specific affections. The hand musculoskeletal model and the experimental protocols developed during this doctoral work provided quantified data which represents a concrete interest to improve prevention but also to elaborate and evaluate rehabilitation programs

    Estimation of hand and wrist muscle capacities in rock climbers

    No full text
    International audiencePurpose: This study investigated the hand and wrist muscle capacities among expert rock climbers and compared them with those of non-climbers. The objective was to identify the adaptations resulting from several years of climbing practice.Methods: Twelve climbers (nine males and three females) and 13 non-climber males participated in this study. Each subject performed a set of maximal voluntary contractions about the wrist and the metacarpo-phalengeal joints during which net joint moments and electromyographic activities were recorded. From this data set, the muscle capacities of the five main muscle groups of the hand (wrist flexors, wrist extensors, finger flexors, finger extensors and intrinsic muscles) were estimated using a biomechanical model. This process consisted in adjusting the physiological crosssectional area (PCSA) and the maximal muscle stress value from an initial generic model.Results: Results obtained from the model provided several new pieces of information compared to the analysis of only the net joint moments. Particularly, the capacities of the climbers were 37.1 % higher for finger flexors compared to non-climbers and were similar for finger extensor and for the other muscle groups. Climbers thus presented a greater imbalance between flexor and extensor capacities which suggests a potential risk of pathologies.Conclusions: The practice of climbing not only increased the strength of climbers but also resulted in specific adaptations among hand muscles. The proposed method and the obtained data could be re-used to optimize the training programs as well as the rehabilitation processes followinghand pathologies

    Electromyography-informed musculoskeletal modeling provides new insight into hand tendon forces during tennis forehand

    No full text
    International audienceLateral epicondylitis, also known as tennis elbow, is a major health issue among tennis players. This musculo-skeletal disorder affects hand extensor tendons, results in substantial pain and impairments for sporting and everyday activities and requires several weeks of recovery. Unfortunately, prevention remains limited by the lack of data regarding biomechanical risk factors, especially because in vivo evaluation of hand tendon forces remains challenging. Electromyography-informed musculo-skeletal modeling is a noninvasive approach to provide physiological estimation of tendon forces based on motion capture and electromyography but was never applied to study hand tendon loading during tennis playing. The objective of this study was to develop such electromyography-informed musculo-skeletal model to provide new insight into hand tendon loading in tennis players. The model was tested with three-dimensional kinematics and electromyography data of two players performing forehand drives at two-shot speeds and with three rackets. Muscle forces increased with shot speed but were moderately affected by racket properties. Wrist prime extensors withstood the highest forces, but their relative implication compared to flexors depended on the player-specific grip force and racket motion strategy. When normalizing wrist extensor forces by shot speed and grip strength, up to threefold differences were observed between players, suggesting that gesture technique, for example, grip position or joint motion coordination, could play a role in the overloading of wrist extensor tendons. This study provided a new methodology for in situ analysis of hand biomechanical loadings during tennis gesture and shed a new light on lateral epicondylitis risk factors
    corecore