147 research outputs found

    Overview of ionizing radiation effects in image sensors fabricated in a deep-submicrometer CMOS imaging technology

    Get PDF
    An overview of ionizing radiation effects in imagers manufactured in a 0.18-μm CMOS image sensor technology is presented. Fourteen types of image sensors are characterized and irradiated by a 60Co source up to 5 kGy. The differences between these 14 designs allow us to separately estimate the effect of ionizing radiation on microlenses, on low- and zero-threshold-voltage MOSFETs and on several pixel layouts using P+ guard-rings and edgeless transistors. After irradiation, wavelength dependent responsivity drops are observed. All the sensors exhibit a large dark current increase attributed to the shallow trench isolation that surrounds the photodiodes. Saturation voltage rises and readout chain gain variations are also reported. Finally, the radiation hardening perspectives resulting from this paper are discussed

    Optoelectrical performance evolution of CMOS image sensors exposed to gamma radiation

    Get PDF
    In this paper we present a study of ionizing radiation effects, up to 5 kGy, in several CMOS image sensors manufactured using a commercial 0.18 μm technology dedicated to imaging

    Random telegraph signals in proton irradiated CCDs and APS

    Get PDF
    Random telegraph dark signal fluctuations have been studied in two types of CCD and two types of CMOS active pixel sensor after proton irradiation at 1.5, 10 and 60 MeV. Time constants and activation energies were very similar, indicating a similar defect type. A large fraction of the defects are multi- rather than 2-level, suggesting a mechanism related to defect clusters being formed from initial single proton events

    Single Event Effects in CMOS Image Sensors

    Get PDF
    In this work, 3T Active Pixel Sensors (APS) are exposed to heavy ions (N, Ar, Kr, Xe), and Single Event Effects (SEE) are studied. Devices were fully functional during exposure, no Single Event Latch-up (SEL) or Single Event Functional Interrupt (SEFI) happened. However Single Event Transient (SET) effects happened on frames: line disturbances, and half or full circular clusters of white pixels. The collection of charges in cluster was investigated with arrays of two pixel width (7 and 10 \textmu{}m), with bulk and epitaxial substrates. This paper shows technological and design parameters involved in the transient events. It also shows that STARDUST simulation software can predict cluster obtained for bulk substrate devices. However, the discrepancies in epitaxial layer devices are large - which shows the need for an improved model

    Analysis of total dose-induced dark current in CMOS image sensors from interface state and trapped charge density measurements

    Get PDF
    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-µm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100°C whereas about a third of the trapped charge remains after 30 min at 300°C

    Estimation and Modeling of the Full Well Capacity in Pinned Photodiode CMOS Image Sensors

    Get PDF
    This letter presents a simple analytical model for the evaluation of the full well capacity (FWC) of pinned photodiode (PPD) CMOS image sensors depending on the operating conditions and on the pixel parameters. While in the literature and technical documentations FWC values are generally presented as fixed values independent of the operating conditions, this letter demonstrates that the PPD charge handling capability is strongly dependent on the photon flu

    Total dose evaluation of deep submicron CMOS imaging technology through elementary device and pixel array behavior analysis

    Get PDF
    Ionizing radiation effects on CMOS image sensors (CIS) manufactured using a 0.18 µm imaging technology are presented through the behavior analysis of elementary structures, such as field oxide FET, gated diodes, photodiodes and MOSFETs. Oxide characterizations appear necessary to understand ionizing dose effects on devices and then on image sensors. The main degradations observed are photodiode dark current increases (caused by a generation current enhancement), minimum size NMOSFET off-state current rises and minimum size PMOSFET radiation induced narrow channel effects. All these effects are attributed to the shallow trench isolation degradation which appears much more sensitive to ionizing radiation than inter layer dielectrics. Unusual post annealing effects are reported in these thick oxides. Finally, the consequences on sensor design are discussed thanks to an irradiated pixel array and a comparison with previous work is discussed

    CMOS Image Sensors in Harsh Radiation Environments

    Get PDF
    CMOS Image Sensors (CIS) have become the main solid state image sensor technology for visible imaging applications. Despite the higher radiation hardness of CIS compared to its CCD counterpart, there are still demanding applications where CMOS imager performances can be significantly reduced by high energy particles. This is the case for the most severe radiation environments where imaging capabilities are required: particle physics, nuclear fusion, nuclear power plants…After a brief overview of the CIS technology and the review of basic degradation mechanisms in harsh radiation environments, mitigation techniques are discussed and recent developments are used as illustrative examples

    New source of random telegraph signal in CMOS image sensors

    Get PDF
    We report a new source of dark current random telegraph signal in CMOS image sensors due to meta-stable Shockley-Read-Hall generation mechanism at oxide interfaces. The role of oxide defects is discriminated thanks to the use of ionizing radiations

    Ionization versus displacement damage effects in proton irradiated CMOS sensors manufactured in deep submicron process

    Get PDF
    Proton irradiation effects have been studied on CMOS image sensors manufactured in a 0.18 μm technology dedicated to imaging. The ionizing dose and displacement damage effects were discriminated and localized thanks to 60Co irradiations and large photodiode reverse current measurements. The only degradation observed was a photodiode dark current increase. It was found that ionizing dose effects dominate this rise by inducing generation centers at the interface between shallow trench isolations and depleted silicon regions. Displacement damages are responsible for a large degradation of dark current non-uniformity. This work suggests that designing a photodiode tolerant to ionizing radiation can mitigate an important part of proton irradiation effects
    corecore