7,725 research outputs found

    Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System

    Get PDF
    Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle

    Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System

    Get PDF
    Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle

    A Comparison of Perceptions of Knowledge and Skills Held by Primary and Secondary Teachers: From the Entry to Exit of Their Preservice Programme

    Get PDF
    The purpose of this study was to investigate if there were differences in the levels of pedagogical knowledge and skills as perceived by the student teachers who were enrolled in the Primary and the Secondary Post Graduate Diploma in Education programme at the National Institute of Education in Singapore. 170 Primary and 426 Secondary student teachers participated in the study. The results showed that there were no significant differences at the beginning of the programme between the two cohorts. However, there were significant differences between the two groups at the end of programme, with the Primary student teachers tending to perceive themselves as gaining more pedagogical knowledge and skills by the end of their initial teacher preparation programme than the Secondary student teachers

    Nanofiltration of aerobically-treated palm oil mill effluent: Characterization of the size of colour compounds using synthetic dyes and polyethylene glycols

    Get PDF
    Membrane-based separation is one of the emerging technologies that have garnered significant interest in recent years for the treatment process of palm oil mill effluent (POME). As documented in the literature, different types of membrane processes such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were used for the POME treatment and the efficiency of separation varied depending on the membrane properties. Unlike the previous works that used membranes to treat POME, the main focus of this current work is to utilize NF membrane to characterize the size of colour compounds in the aerobically-treated POME (AT-POME). Two different markers, i.e., synthetic dyes and polyethylene glycols (PEGs) with molecular weight (MW) in the range of 200-1000 g/mol were used to characterize the colour compounds in the AT-POME. Results showed that dyes are more suitable compared to PEGs for the characterization because dyes possessed negative charge similar as the colour compounds in the AT-POME. By using dyes as the markers, it was found that the size of the colour compounds in the AT-POME was at MW of 300-400 g/mol. Precise determination of the size of colour compounds in the AT-POME is of importance as it could provide useful information on the selection of ideal membrane properties (in particular pore size or molecular weight cut-off) to achieve complete solute separation

    Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2

    Full text link
    Measurements of the superconducting transition temperature, T_c, under hydrostatic pressure via bulk AC susceptibility were carried out on several concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This demonstrates that phosphorous substitution and physical pressure result in similar superconducting phase diagrams, and that phosphorous substitution does not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical Society of Japa

    Effect of correlations on network controllability

    Get PDF
    A dynamical system is controllable if by imposing appropriate external signals on a subset of its nodes, it can be driven from any initial state to any desired state in finite time. Here we study the impact of various network characteristics on the minimal number of driver nodes required to control a network. We find that clustering and modularity have no discernible impact, but the symmetries of the underlying matching problem can produce linear, quadratic or no dependence on degree correlation coefficients, depending on the nature of the underlying correlations. The results are supported by numerical simulations and help narrow the observed gap between the predicted and the observed number of driver nodes in real networks

    An SO(10) Grand Unified Theory of Flavor

    Get PDF
    We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based on an S4S_4 family symmetry. It makes use of our recent proposal to use SO(10) with type II seesaw mechanism for neutrino masses combined with a simple ansatz that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has rank one. In this paper, we show how the rank one model can arise within some plausible assumptions as an effective field theory from vectorlike {\bf 16} dimensional matter fields with masses above the GUT scale. In order to obtain the desired fermion flavor texture we use S4S_4 flavon multiplets which acquire vevs in the ground state of the theory. By supplementing the S4S_4 theory with an additional discrete symmetry, we find that the flavon vacuum field alignments take a discrete set of values provided some of the higher dimensional couplings are small. Choosing a particular set of these vacuum alignments appears to lead to an unified understanding of observed quark-lepton flavor: (i) the lepton mixing matrix that is dominantly tri-bi-maximal with small corrections related to quark mixings; (ii) quark lepton mass relations at GUT scale: mbmτm_b\simeq m_{\tau} and mμ3msm_\mu\simeq 3 m_s and (iii) the solar to atmospheric neutrino mass ratio m/matmθCabibbom_\odot/m_{\rm atm}\simeq \theta_{\rm Cabibbo} in agreement with observations. The model predicts the neutrino mixing parameter, Ue3θCabibbo/(32)0.05U_{e3} \simeq \theta_{\rm Cabibbo}/(3\sqrt2) \sim 0.05, which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP

    Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses

    Get PDF
    Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis
    corecore