4 research outputs found

    Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet

    Get PDF
    We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993

    Crystal orientation fabric anisotropy causes directional hardening of the Northeast Greenland Ice Stream

    Get PDF
    This research was undertaken, in part, thanks to funding from the Canada Excellence Research Chairs Programme and has been financially supported by the Villum Investigator Project IceFlow (Grant No. 16572 to D.D.-J.). Radar development was further supported by funding from the University of Alabama. EGRIP is directed and organised by the Centre for Ice and Climate at the Niels Bohr Institute, University of Copenhagen. S.F. received funding from the German Academic Exchange Service (DAAD): Forschungsstipendien für promovierte Nachwuchswissenschaftlerinnen und -wissenschaftler. M.R.E. was supported by a DFG Emmy Noether grant (grant no. DR 822/3-1).The dynamic mass loss of ice sheets constitutes one of the biggest uncertainties in projections of ice-sheet evolution. One central, understudied aspect of ice flow is how the bulk orientation of the crystal orientation fabric translates to the mechanical anisotropy of ice. Here we show the spatial distribution of the depth-averaged horizontal anisotropy and corresponding directional flow-enhancement factors covering a large area of the Northeast Greenland Ice Stream onset. Our results are based on airborne and ground-based radar surveys, ice-core observations, and numerical ice-flow modelling. They show a strong spatial variability of the horizontal anisotropy and a rapid crystal reorganisation on the order of hundreds of years coinciding with the ice-stream geometry. Compared to isotropic ice, parts of the ice stream are found to be more than one order of magnitude harder for along-flow extension/compression while the shear margins are potentially softened by a factor of two for horizontal-shear deformation.Publisher PDFPeer reviewe

    Antarctic Bedmap data: FAIR sharing of 60 years of ice bed, surface and thickness data [in review]

    Get PDF
    Over the past 60 years, scientists have strived to understand the past, present and future of the Antarctic Ice Sheet. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss and ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce new gridded maps of ice thickness and bed topography for the international scientific community, but also to standardize and make available all the geophysical survey data points used in producing the Bedmap gridded products. Here, we document the survey data used in the latest iteration, Bedmap3, incorporating and adding to all of the datasets previously used for Bedmap1 and Bedmap2, including ice-bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically, we describe the processes used to standardize and make these and future survey and gridded datasets accessible under the ‘Findable, Accessible, Interoperable and Reusable’ (FAIR) data principles. With the goals to make the gridding process reproducible and to allow scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal (bedmap.scar.org, last access: 18 October 2022) created to provide unprecedented open access to these important datasets, through a user-friendly webmap interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data held within it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk
    corecore