15 research outputs found

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium.

    No full text
    The in vivo cardiac differentiation and functional effects of unmodified adult bone marrow mesenchymal stem cells (MSCs) after myocardial infarction (MI) is controversial. We postulated that ex vivo pretreatment of autologous MSCs using cardiomyogenic growth factors will lead to cardiomyogenic specification and will result in superior biological and functional effects on cardiac regeneration of chronically infarcted myocardium. We used a chronic dog MI model generated by ligation of the coronary artery (n = 30). Autologous dog bone marrow MSCs were isolated, culture expanded, and specified into a cardiac lineage by adding growth factors, including basic FGF, IGF-1, and bone morphogenetic protein-2. Dogs underwent cell injection >8 wk after the infarction and were randomized into two groups. Group A dogs (n = 20) received MSCs specified with growth factors (147 +/- 96 x 10(6)), and group B (n = 10) received unmodified MSCs (168 +/- 24 x 10(6)). After the growth factor treatment, MSCs stained positive for the early muscle and cardiac markers desmin, antimyocyte enhancer factor-2, and Nkx2-5. In group A dogs, prespecified MSCs colocalized with troponin I and cardiac myosin. At 12 wk, group A dogs showed a significantly larger increase in regional wall thickening of the infarcted territory (from 22 +/- 8 to 32 +/- 6% in group A; P < 0.05 vs. baseline and group B, and from 19 +/- 7 to 21 +/- 7% in group B, respectively) and a decrease in the wall motion score index (from 1.60 +/- 0.05 to 1.35 +/- 0.03 in group A; P < 0.05 vs. baseline and group B, and from 1.58 +/- 0.07 vs. 1.56 +/- 0.08 in group B, respectively). The biological ex vivo cardiomyogenic specification of adult MSCs before their transplantation is feasible and appears to improve their in vivo cardiac differentiation as well as the functional recovery in a dog model of the chronically infarcted myocardium.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The PTX3/TLR4 autocrine loop as a novel therapeutic target in triple negative breast cancer

    Get PDF
    Abstract Background The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC. Methods The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC. Results In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells. Conclusion Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC. Graphical abstrac

    Surveillance of effects of HPV vaccination in Belgium

    No full text
    Early effects of HPV (human papillomavirus) vaccination are reflected by changes observable in young women attending cervical cancer screening.publisher: Elsevier articletitle: Surveillance of effects of HPV vaccination in Belgium journaltitle: Cancer Epidemiology articlelink: http://dx.doi.org/10.1016/j.canep.2015.12.011 content_type: article copyright: Copyright © 2016 Elsevier Ltd. All rights reserved.status: publishe

    Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer.

    No full text
    Myoferlin is a multiple C2-domain-containing protein that regulates membrane repair, tyrosine kinase receptor function and endocytosis in myoblasts and endothelial cells. Recently it has been reported as overexpressed in several cancers and shown to contribute to proliferation, migration and invasion of cancer cells. We have previously demonstrated that myoferlin regulates epidermal growth factor receptor activity in breast cancer. In the current study, we report a consistent overexpression of myoferlin in triple-negative breast cancer cells (TNBC) over cells originating from other breast cancer subtypes. Using a combination of proteomics, metabolomics and electron microscopy, we demonstrate that myoferlin depletion results in marked alteration of endosomal system and metabolism. Mechanistically, myoferlin depletion caused impaired vesicle traffic that led to a misbalance of saturated/unsaturated fatty acids. This provoked mitochondrial dysfunction in TNBC cells. As a consequence of the major metabolic stress, TNBC cells rapidly triggered AMP activated protein kinase-mediated metabolic reprogramming to glycolysis. This reduced their ability to balance between oxidative phosphorylation and glycolysis, rendering TNBC cells metabolically inflexible, and more sensitive to metabolic drug targeting in vitro. In line with this, our in vivo findings demonstrated a significantly reduced capacity of myoferlin-deficient TNBC cells to metastasise to lungs. The significance of this observation was further supported by clinical data, showing that TNBC patients whose tumors overexpress myoferlin have worst distant metastasis-free and overall survivals. This novel insight into myoferlin function establishes an important link between vesicle traffic, cancer metabolism and progression, offering new diagnostic and therapeutic concepts to develop treatments for TNBC patients.Oncogene advance online publication, 24 October 2016; doi:10.1038/onc.2016.369.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Asporin binds to TGF-β1 and inhibits its downstream signaling and function.

    No full text
    <p>(A) Western blot analysis of phospho-SMAD2 (p-SMAD2) and SMAD2 total protein extracts from MDA-MB-468 breast cancer cells treated for 15 min with TGF-β1 and/or human recombinant asporin (Rec. ASPN). (B) Western blot analysis of p-SMAD2 in total protein extracts from MDA-MB-468 breast cancer cells treated with TGF-β1 and/or asporin peptide corresponding to the 159–205 amino acid region (ASPNpep.). (C) Western blot analysis of p-SMAD2 and SMAD2 in total protein extracts from EpRAS cells treated for 15 min with TGF-β1 (5 ng/ml) and/or asporin peptide. (D) EMT induction in EpRAS cells in the presence of TGF-β1 and/or asporin peptide. EMT was monitored both at the phenotype level (upper panel) and using Western blot evaluation of VIM expression in total protein extracts from EpRAS cells (lower panel). (A–D): HSC70 was used as loading control. (E) Transwell migration assay of EpRAS cells pretreated with TGF-β1 (5 ng/ml) and/or asporin peptide (10 μg/ml). (F) Quantification of the CSC population in EpRAS cells following TGF-β1 and/or asporin peptide treatment. (E and F): The data are presented as mean ± SD. All panels: statistical significance was calculated using the Student’s <i>t</i>-test (as described in the <a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1001871#sec010" target="_blank">Methods</a> section). Western blots show representative data of three independent experiments.</p

    Asporin is produced by breast fibroblasts in response to conditioned medium from breast cancer cells.

    No full text
    <p>(A) Western blot of total cell extracts (upper panel) and qRT-PCR analysis for asporin expression (lower panel) in breast cancer cell lines and NBFs incubated for 48 h with CM collected from a panel of breast cancer cells. (B) Western blot of total cell extracts (upper panel) and qRT-PCR analysis of asporin expression (lower panel) in non-cancerous epithelial breast cell line MCF-10A cells and NBFs incubated for 48 h with CM collected from MCF-10A. Fibroblasts treated with MCF-7 CM were used as the positive control for asporin expression induction. (C) Validation of NBFs and CAFs isolated from patient material. MCF-7 and MDA-MB-231 cells were used as epithelial controls. (D) Western blot analysis of asporin expression in total cell extracts of CAFs obtained from three different patients and treated with the CM of breast cancer cell lines. (A and B): The data are presented as mean ± SD. All panels: HSC70 was used as loading control; Western blots show representative data of three independent experiments.</p

    Asporin is overexpressed in breast cancer tissues.

    No full text
    <p>(A) Tissue-specific pattern of mRNA expression of asporin (ASPN), biglycan (BGN), and decorin (DCN). Source: BioGPS (<a href="http://biogps.org/" target="_blank">http://biogps.org</a>). The data are presented as mean ± standard deviation (SD). (B) Representative IHC staining of asporin expression in ductal carcinoma and adjacent non-tumoral breast tissue (left panel) and normal breast tissue obtained from patients undergoing mammary reduction surgery (right panel). Asporin is almost exclusively expressed in breast cancer lesions, while a very low signal is detectable in the adjacent non-tumoral regions. Normal breast tissues are negative. Images of representative fields were taken at 100× and 400× magnification. (C) Western blot analysis of asporin expression in tumoral breast cancer tissues (T) and the adjacent normal counterpart (AdN) of six ductal adenocarcinoma patients. Ponceau red staining was used as loading control.</p

    Co-injection of cancer cells and fibroblasts overexpressing asporin reduces primary breast cancer tumor growth and lung metastasis formation in vivo.

    No full text
    <p>(A) Western blot analysis of asporin expression in CM of MDA-MB-468 cells and in NBF stable clones used for subcutaneous injection in mice. Ponceau red is shown as loading control. (B) Bioluminescence imaging of control and asporin-expressing xenografts at day 28 after tumor engraftment. The color scale indicates the fluorescent intensity. (C) The volume (in cubic millimeters) of primary tumors measured weekly (from day 7 onwards). The data are presented as mean ± standard error of the mean (SEM) (<i>n</i> = 10 for each group). Statistical significance was calculated using Student’s <i>t</i>-test (**0.01 < <i>p</i> < 0.001; ***0.001 < <i>p</i> < 0.0001). (D) Human-specific Alu-PCR performed on genomic DNA isolated from dissected lungs was used to detect human cancer cells. The data are presented as mean ± SD. (E) Western blot analysis of asporin expression in mice primary tumors monitored for several weeks. HSC70 was used as loading control.</p
    corecore